
Common CP Algorithms
at ATLAS

Nils Krumnack (Iowa State University)
on behalf of the ATLAS computing activity

Nils Krumnack (Iowa State University)

Introduction
• ATLAS analyzers need to apply a lot of code on top of input files
‣ e.g. final calibrations, selections, scale factors
‣ developed separately by respective domain experts
‣ commonly called "CP recommendations"

• ATLAS has infrastructure for the user to apply them
‣ allows to treat recommendations (mostly) as a black box
‣ allows to get users started very quickly
‣ allows easy rollout of new recommendations

• currently done via one of several "analysis frameworks"
‣ each maintained by their respective user communities

• goal: a single analysis framework for all of ATLAS
‣ further harmonization for ATLAS analysis
‣ reduced maintenance effort
‣ improved user experience

2

Nils Krumnack (Iowa State University)

CP Tools at ATLAS
• a CP tool is an ATLAS "component" class for applying central

analysis recommendations
‣ performs calculations belonging to recommendation
‣ configurable from python or C++
‣ sharable between analysis, production and online code

• tools implement a tool specific C++ interface
‣member functions specific to what the tool does
‣ inputs are EDM objects ← very stable interface

• CP tools also implement a common interface for systematics
‣ allows to query list of tool systematics
‣ allow quick changes between systematics
‣ chosen systematic used for all subsequent calls

3

Nils Krumnack (Iowa State University)

CP Tool Successes
• easy to implement and deliver recommendations
‣ can customize tool interface for task at hand
‣ using EDM objects in interfaces keeps interfaces stable
‣ easy distribution via ATLAS software releases
‣ built-in mechanism for distributing calibration files

• recommendations fairly straightforward to use
‣ can (normally) treat the implementation as black box
‣ (most) CP tools usable with 2-5 lines of code
‣ can set configuration options on each tool as needed

• CP tools can be shared between analysis, production and online
• CP tool interfaces can hide very complex implementations

4

Nils Krumnack (Iowa State University)

CP Tool Problems
• building an analysis from CP tools often non-trivial:
‣ can involve using dozens of tools
‣ each tool needs some custom code to call it
‣ configuration needs to be consistent across tools
‣ various subtleties and pitfalls
‣ applying them consistently between analyses difficult

• numerous analysis framework evolved
‣ take care of applying all CP tools
‣ hide a lot of the technical details
‣ provide extra functionality, most commonly n-tuple making

• numerous analysis frameworks in ATLAS these days
‣ duplication of development/maintenance efforts
‣ reproducibility between frameworks can be a problem

• want a single framework for everyone to use

5

Nils Krumnack (Iowa State University)

Challenges for Framework
• need high degree of customizability for unified framework
‣ single framework needs to cover all ATLAS users
‣ need ability to select which object types to use
• allow multiple copies (with different settings)
‣ allow writing out both tight and loose selection for an object
‣ support both main analyses and special studies

• separate default configuration from user configuration
‣ domain experts provide/maintain the default configuration
‣ users select configuration they want
‣ users can override (most) settings as needed

• need efficient systematics handling
‣ATLAS analysis can have well over 100 systematics
‣want to minimize work to be done
‣want detailed bookkeeping of all systematics

6

Nils Krumnack (Iowa State University)

CP Algorithms
• first challenge: CP tools are not "schedulable"
‣ each tool has a custom C++ interface
‣ requires custom C++ wrapper per tool
‣ harder to add/remove tools based on configuration

• utilize concept of ATLAS algorithms:
‣ single common interface, called once per event
‣ input/output via a shared whiteboard
‣ easy to setup "sequence" of algorithms in configuration
‣ can add/drop/repeat algorithms as needed
‣ concept already well established in reconstruction/online

• wrap CP tools in "CP algorithms":
‣ one CP tool per CP algorithm
‣ systematics loop internal to each algorithm
‣ configuration creates full sequences for each object type

7

Nils Krumnack (Iowa State University)

Systematics Handling
• want to run each tool only for minimal set of systematics
‣ systematics directly affecting the tool
‣ systematics affecting the tool’s input

• needs full data dependency tracking
‣ done at variable level, not object level

• access all inputs/outputs via "systematics data handles"
‣ one data handle for each accessed object/variable
‣ declares list of inputs/outputs for dependency tracking
‣ allows access to data for current systematics
‣ encapsulates all systematics handling code
‣ code structurally very similar to code without systematics

• originally did systematics tracking during configuration
‣ switched to post-configuration initialization
‣ simplifies both configuration and dependency tracking

8

Nils Krumnack (Iowa State University)

N-Tuple Output
• main use of analysis frameworks in Run 1-3:
‣ produce "flat" n-tuple from centrally produced files

• traditional approach: separate tree for each systematic
‣ simple to write out: global loop over all systematics
‣ easy to analyze: global loop over all systematics

• CP algorithm: single tree, separate branch(es) for each systematic
‣ utilize per-variable systematics tracking
‣ know exactly which variable is affected by which systematic
‣ extra bookkeeping during analyze

• branch-per-systematic much more space efficient
‣ about 1-2 orders of magnitude
‣ rather significant: can mean 10s of TB vs <1TB

9

Nils Krumnack (Iowa State University)

Configuration
• original design: produce one sequence for each object type
‣ sequence maker code contains actual physics configuration
‣maintained by respective domain experts
‣ user can override settings on each tool/algorithm

• works well for individual sequences
‣ encapsulates/hides many implementation details
‣well defined inputs/outputs

• composition of sequences more tricky:
‣ need to track extra information besides sequence
• e.g. selection flags created, operations applied, inputs used
• affects downstream configuration (possibly also upstream)
‣ need to manage temporaries created in whiteboard
‣ need to eliminate duplicate operations

10

Nils Krumnack (Iowa State University)

New Configuration
• new approach: build configuration from individual "blocks"
‣ blocks are python objects that generate sequences
→ alg. sequence now produced after user configuration
‣ blocks define their own options for the user
‣ blocks responsible for interfacing with each other

• blocks communicate via central configuration accumulator
‣ avoids blocks directly interacting with each other
‣ two step process → allows passing information upstream

(mostly used for managing temporaries)

• also working on a text-based configuration
‣ assemble blocks from a yaml configuration file
‣ goal: more abstract, physics-oriented configuration
‣ specify what you want, not how to get it

11

Nils Krumnack (Iowa State University)

Rollout at ATLAS
• rollout at ATLAS has been slow
‣ fairly high effort to switch analysis frameworks
• changes to configuration and n-tuple formats
‣ benefits of single framework more abstract
‣ existing analysis frameworks "good enough" for most users
‣most people agree to switch at some point

• used in central production of new PHYSLITE format
‣ contains pre-calibrated objects for simpler/faster analysis
‣ see Jana Schaarschmidt’s talk

• starting to see more active migration efforts lately
‣ demonstrated size benefits of CP algorithms n-tuple
‣ new configuration now available
‣more central role in beginner’s tutorial
‣ first analysis framework developers getting involved

12

Nils Krumnack (Iowa State University)

Summary & Conclusions
• ATLAS provides central recommendations to analysis users
‣CP tool mechanism well-established for years
‣ insulates users from most implementation details

• integration of CP tools via analysis frameworks
‣ removes most remaining complexities
‣ allows users to get started very quickly
‣multiple analysis frameworks currently in use

• presented a unified analysis framework for all of ATLAS
‣ being rolled out to the user community
‣ used as foundation for further Run 3/4 software

(see following talks)

13

backup slides

Nils Krumnack (Iowa State University)

A Common Framework
• goal: have a common analysis framework for all of ATLAS
‣ provide better physics harmonization
‣ provide more flexibility to users
‣ employ best practices in implementation
‣ reduce duplication of development/maintenance efforts
‣ supplement or replace existing frameworks

• no obvious framework to pick as the common one:
‣most popular framework had 15-25% of users
‣ functionality not always good match to what we wanted
‣ generally would need rework of implementation

• started a new analysis framework from scratch:
‣ import best ideas from the different frameworks
‣most work went into central infrastructure developments
‣main challenge was clean/efficient systematics handling

15

Nils Krumnack (Iowa State University)

Systematics Storage
• ATLAS EDM has shallow copy feature
‣make efficient copies of existing object containers
‣ reuse all object variables that are not modified
‣ adding/overwriting variables on copy doesn’t change original

• easy to do systematics with shallow copies
‣ algorithms that add new systematics make new copies
‣ data handles can create or lookup correct copies
‣works well for simple linear setups

• doesn’t work well for complex setups:
‣ algorithms don’t use all object variables from their inputs
‣ per-object systematics tracking picks up superfluous systematics
‣ switched to per-variable systematics tracking instead
‣ give different names to variables based on systematics

16

