
Boosting RDataFrame performance
with transparent bulk event processing

Enrico Guiraud, J. Blomer, P. Canal, A. Naumann
CHEP 2023, 8/5/2023

mailto:enrico.guiraud@cern.ch

Bulk processing:
what and why

“bulk data processing in ROOT,
high-energy physics, abstract art”

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

A large R&D effort, for a large impact

3

RDataFrame (RDF) is ROOT’s modern analysis
interface addressing most common use cases
with one high-level programming model
that performs well, scales well and enables

HEP-specific ergonomics, in C++ and Python.
See e.g. E. Guiraud, ICHEP 2022.

Given RDF’s popularity, we decided to
investigate the potential performance
benefits of a large refactoring of its

inner data processing loop.

What is presented here is current R&D that
we plan to release as part of ROOT this year.

https://agenda.infn.it/event/28874/contributions/169191/

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

How things currently look

4

df.Filter("nMuon == 2 && charge[0]*charge[1] < 0")
 .Define("mass",
 InvariantMass<float>,
 {"pt", "eta", "phi", "mass"})
 .Histo1D("mass");

From the Dimuon RDF tutorial.

On my laptop, reading 61M events from warm cache: 2.5M events/s or 101 MiB/s
(ZSTD-compressed data actually decompressed and processed, single-core).

This R&D does not speed up raw I/O and decompression, but see the RNTuple talk.

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html
https://indico.jlab.org/event/459/contributions/11594/

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Previously: event by event processing

5

ROOT I/O loads data from storage in bulks, but RDF goes through it event-wise:

● per-event overheads related to preparing data for processing
● unfriendly to the CPU data/instruction caches
● prevents some optimization opportunities, e.g. GPU offloading

df.Filter(...)
 .Define("mass", ...)
 .Histo1D("mass");

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

R&D: bulk data processing in RDF

6

df.Filter(...)
 .Define("mass", ...)
 .Histo1D("mass");

For each node of the comp. graph, RDF runs over a bulk of entries at a time:

● overheads related to data preparation are now per-bulk
● friendlier to CPU caches
● enables GPU offloading and specialized, vectorized operations

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

The big picture

7

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Complication #1: unaligned baskets

8

df.Filter(...)
 .Define("mass", ...)
 .Histo1D("mass");

Each column’s data is compressed together in “baskets”.
Different columns have different basket boundaries.
➔ RDF bulks (transversal to columns) cannot respect basket boundaries
➔ we decompress values into RDF’s own storage (may require +1 copy):

● guarantees all column values in a bulk are contiguous in memory
● avoids redundant decompressions due to basket hopping

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Complication #2: event masks

9

df.Filter(...)
 .Define("mass", ...)
 .Histo1D("mass");

Most operations on the bulk (e.g. histogram fills) are conditional on the event mask
➔ very hard for the compiler to auto-vectorize operations

Different branches of the comp. graph require same values with different masks
➔ care required to coordinate loads/computations of values across the graph

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Enabling vectorized operations

10

float square(float x);

df.Define("x2", square, {"x"});

void bulkSquare(const REventMask &m,
 RVec<float> &results,
 const RVec<float> &xs);

df.Define("x2", bulkSquare, {"x"});

Event-wise operations remain the default,
we add the option to implement bulk versions of heavy computations.

bulkSquare operates on many contiguous values,
possibly ignoring the event mask in order to leverage CPU vectorization.

It could also dispatch the computation to a GPU kernel (e.g. for ML inference).

Performance
benchmarks

“me running performance benchmarks on my code
as an Edward Hopper painting”

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

A new free parameter: the bulk size

12

● runtime plateaus in a sensible range
(256-4096, error bars are negligible)

● no meaningful RAM usage increase
except for the largest bulk sizes

● plot shows trends for the dimuon analysis,
but behavior has been consistent across
different benchmarks, machines, TTree
and RNTuple

● still, GPU kernels and specialized use cases
will have different requirements

● can pick a reasonable default in the
plateau range, customizable at runtime

https://github.com/eguiraud/rdf-benchmarks/blob/main/src/dimuonanalysis.cpp

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Better runtimes on simple schemas

13

Speed-up on simple column types
(floats and C-style arrays thereof)

2x for TTree
1.6x for RNTuple

● + bulk API: a more CPU-friendly version
of the invariant mass calculation
provides a further 15% speed-up
(can likely be improved)

● speed-up compounds with
multi-threading (8 threads here)

● error bars are negligible

Benchmark source code

https://github.com/eguiraud/invmass-bench
https://github.com/eguiraud/rdf-benchmarks/blob/main/src/dimuonanalysis.cpp

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Smaller gains on non-trivial types

14

Speed-up with non-trivial column types
(std::vector<float>, std::vector<bool>)

1.2x for TTree
1.4x for RNTuple

● cannot leverage low-level TTree bulk I/O;
situation is better with RNTuple

● harder to “bulkify” the value preparation
logic for complex types, even if it is just
STL collections

● std::vector<bool> introduces extra
complications because of bit-packing

Benchmark source code

https://github.com/eguiraud/rdf-benchmarks/blob/main/src/iotools_atlas.cpp

Conclusions

“an impressionist painting of happy CPU cores”

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Moving from R&D to production

16

We showed:

● there is potential for a much faster RDF for common analysis use cases
(for TTree and RNTuple, for each core of a multi-core run)

● …especially for simple schemas (“flat ntuples”)

● bulk-wise computation kernels can speed up expensive computations

Remaining challenges before prime time:

● graceful degradation in case of files with bad clustering/basket sizes

● some RDF features still unsupported, e.g. callbacks and DefinePerSample

Let me know if you are interested in becoming a beta tester!

Back-up

“isometric diorama of a library”

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Code and benchmark setup

18

● development branch: github.com/eguiraud/root/tree/df-bulk
● benchmarks: github.com/eguiraud/rdf-benchmarks

● CPU: Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz
● Intel turbo boost, hyper-threading and speedstep turned off
● CPU frequency governor set to “performance”
● no JIT-ed code, all code built with -O3 optimization with gcc 12.2.1

(O2 vs O3 makes a huge difference for RNTuple!)
● all input files were ZSTD-compressed, read from warm filesystem cache

some core RDF features

still unsupported

https://github.com/eguiraud/root/tree/df-bulk
https://github.com/eguiraud/rdf-benchmarks
https://indico.jlab.org/event/459/contributions/11563/

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

The algorithm in a nutshell

19

for e in entries:
 if eval_filter(e):
 x = eval_define(e)
 fill_histo(x)

max_size = get_max_bulk_size()
while not done:
 bulk = datasource.next_range(max_size)
 mask = event_mask(bulk)
 xs = eval_define(bulk, mask)
 fill_histo(bulk, mask, xs)

vs = load_col_values(bulk)
for e in bulk:
 m[e] = eval_filter(vs[e])
return m

vs = load_col_values(bulk)
for e in bulk:
 if (mask[e])
 xs[e] = eval_expr(vs[e])
return xs

for e in bulk:
 if (mask[e])
 histo.fill(xs[e])

● Filter/Define evaluation and histogram filling now in a hot loop
● RDF talks to the I/O layer once per bulk, not once per entry
● need to cache bulk.size() column values, filter/define results

event_mask

eval_define

fill_histo

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

What about memory usage?

20

In our tests, the increase in memory usage due to having to store bulkSize results
and cache bulkSize column values was negligible with respect to the baseline
memory usage of ROOT I/O, the interpreter, the histograms.

The latter factors contribute to O(100) MBs of allocations: that’s a lot of column
values cached.

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Code for runtime vs bulk size plot

21

In the speaker notes.

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Code for dimuon bulk speed-up plot

22

In the speaker notes.

E. Guiraud et al., Bulk RDF@CHEP2023, 8/5/2023

Code for ATLAS iotools bulk speed-up plot

See speaker notes

23

