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Bulk processing:
what and why

“bulk data processing in ROOT,
high-energy physics, abstract art”
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A large R&D effort, for a large impact
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RDataFrame (RDF) is ROOT’s modern analysis 
interface addressing most common use cases 
with one high-level programming model
that performs well, scales well and enables 

HEP-specific ergonomics, in C++ and Python.
See e.g. E. Guiraud, ICHEP 2022.

Given RDF’s popularity, we decided to 
investigate the potential performance 
benefits of a large refactoring of its 

inner data processing loop.

What is presented here is current R&D that 
we plan to release as part of ROOT this year.

https://agenda.infn.it/event/28874/contributions/169191/
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How things currently look
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df.Filter("nMuon == 2 && charge[0]*charge[1] < 0")
    .Define("mass",
                    InvariantMass<float>,
                    {"pt", "eta", "phi", "mass"})
    .Histo1D("mass");

From the Dimuon RDF tutorial.

On my laptop, reading 61M events from warm cache: 2.5M events/s or 101 MiB/s
(ZSTD-compressed data actually decompressed and processed, single-core).

This R&D does not speed up raw I/O and decompression, but see the RNTuple talk.

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html
https://indico.jlab.org/event/459/contributions/11594/
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Previously: event by event processing
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ROOT I/O loads data from storage in bulks, but RDF goes through it event-wise:

● per-event overheads related to preparing data for processing
● unfriendly to the CPU data/instruction caches
● prevents some optimization opportunities, e.g. GPU offloading

df.Filter(...)
    .Define("mass", ...)
    .Histo1D("mass");
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R&D: bulk data processing in RDF
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df.Filter(...)
    .Define("mass", ...)
    .Histo1D("mass");

For each node of the comp. graph, RDF runs over a bulk of entries at a time:

● overheads related to data preparation are now per-bulk
● friendlier to CPU caches
● enables GPU offloading and specialized, vectorized operations
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The big picture
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Complication #1: unaligned baskets

8

df.Filter(...)
    .Define("mass", ...)
    .Histo1D("mass");

Each column’s data is compressed together in “baskets”.
Different columns have different basket boundaries.
➔ RDF bulks (transversal to columns) cannot respect basket boundaries
➔ we decompress values into RDF’s own storage (may require +1 copy):

● guarantees all column values in a bulk are contiguous in memory
● avoids redundant decompressions due to basket hopping
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Complication #2: event masks
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df.Filter(...)
    .Define("mass", ...)
    .Histo1D("mass");

Most operations on the bulk (e.g. histogram fills) are conditional on the event mask
➔ very hard for the compiler to auto-vectorize operations

Different branches of the comp. graph require same values with different masks
➔ care required to coordinate loads/computations of values across the graph
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Enabling vectorized operations
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float square(float x);

df.Define("x2", square, {"x"});

void bulkSquare(const REventMask &m,
                                 RVec<float> &results,
                                 const RVec<float> &xs);

df.Define("x2", bulkSquare, {"x"});

Event-wise operations remain the default,
we add the option to implement bulk versions of heavy computations.

bulkSquare operates on many contiguous values,
possibly ignoring the event mask in order to leverage CPU vectorization. 

It could also dispatch the computation to a GPU kernel (e.g. for ML inference).



Performance 
benchmarks

“me running performance benchmarks on my code
as an Edward Hopper painting”
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A new free parameter: the bulk size
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● runtime plateaus in a sensible range 
(256-4096, error bars are negligible)

● no meaningful RAM usage increase
except for the largest bulk sizes

● plot shows trends for the dimuon analysis, 
but behavior has been consistent across 
different benchmarks, machines, TTree 
and RNTuple

● still, GPU kernels and specialized use cases 
will have different requirements

● can pick a reasonable default in the 
plateau range, customizable at runtime

https://github.com/eguiraud/rdf-benchmarks/blob/main/src/dimuonanalysis.cpp
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Better runtimes on simple schemas
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Speed-up on simple column types
(floats and C-style arrays thereof)

2x for TTree
1.6x for RNTuple

● + bulk API: a more CPU-friendly version 
of the invariant mass calculation 
provides a further 15% speed-up
(can likely be improved)

● speed-up compounds with 
multi-threading (8 threads here)

● error bars are negligible

Benchmark source code

https://github.com/eguiraud/invmass-bench
https://github.com/eguiraud/rdf-benchmarks/blob/main/src/dimuonanalysis.cpp
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Smaller gains on non-trivial types
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Speed-up with non-trivial column types
(std::vector<float>, std::vector<bool>)

1.2x for TTree
1.4x for RNTuple

● cannot leverage low-level TTree bulk I/O;
situation is better with RNTuple

● harder to “bulkify” the value preparation 
logic for complex types, even if it is just 
STL collections

● std::vector<bool> introduces extra 
complications because of bit-packing

Benchmark source code

https://github.com/eguiraud/rdf-benchmarks/blob/main/src/iotools_atlas.cpp


Conclusions

“an impressionist painting of happy CPU cores”
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Moving from R&D to production
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We showed:

● there is potential for a much faster RDF for common analysis use cases
(for TTree and RNTuple, for each core of a multi-core run)

● …especially for simple schemas (“flat ntuples”)

● bulk-wise computation kernels can speed up expensive computations 

Remaining challenges before prime time:

● graceful degradation in case of files with bad clustering/basket sizes

● some RDF features still unsupported, e.g. callbacks and DefinePerSample 

Let me know if you are interested in becoming a beta tester!



Back-up

“isometric diorama of a library”
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Code and benchmark setup
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● development branch: github.com/eguiraud/root/tree/df-bulk
● benchmarks: github.com/eguiraud/rdf-benchmarks 

● CPU: Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz
● Intel turbo boost, hyper-threading and speedstep turned off
● CPU frequency governor set to “performance”
● no JIT-ed code, all code built with -O3 optimization with gcc 12.2.1

(O2 vs O3 makes a huge difference for RNTuple!)
● all input files were ZSTD-compressed, read from warm filesystem cache

some core RDF features

still unsupported

https://github.com/eguiraud/root/tree/df-bulk
https://github.com/eguiraud/rdf-benchmarks
https://indico.jlab.org/event/459/contributions/11563/
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The algorithm in a nutshell
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for e in entries:
  if eval_filter(e):
    x = eval_define(e)
    fill_histo(x)

max_size = get_max_bulk_size()
while not done:
  bulk = datasource.next_range(max_size)
  mask = event_mask(bulk)
  xs = eval_define(bulk, mask)
  fill_histo(bulk, mask, xs)

vs = load_col_values(bulk)
for e in bulk:
  m[e] = eval_filter(vs[e])
return m

vs = load_col_values(bulk)
for e in bulk:
  if (mask[e])
    xs[e] = eval_expr(vs[e])
return xs

for e in bulk:
  if (mask[e])
    histo.fill(xs[e])

● Filter/Define evaluation and histogram filling now in a hot loop
● RDF talks to the I/O layer once per bulk, not once per entry
● need to cache bulk.size() column values, filter/define results

event_mask

eval_define

fill_histo
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What about memory usage?
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In our tests, the increase in memory usage due to having to store bulkSize results 
and cache bulkSize column values was negligible with respect to the baseline 
memory usage of ROOT I/O, the interpreter, the histograms.

The latter factors contribute to O(100) MBs of allocations: that’s a lot of column 
values cached.
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Code for runtime vs bulk size plot  
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In the speaker notes.
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Code for dimuon bulk speed-up plot  
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In the speaker notes.
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Code for ATLAS iotools bulk speed-up plot 

See speaker notes
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