
Interpreting C++20, with profiling and debugging
26

th
International Conference on Computing in High Energy and Nuclear Physics

Philippe Canal (FNAL), Javier Lopez-Gomez (CERN), Guilherme Amadio (CERN),
Jonas Hahnfeld (CERN), Axel Naumann (CERN), Vassil Vassilev (Princeton)

CHEP2023, 11/05/2023

Contents

1 Cling at the foundation of HENP computing

2 Cling in the clang ecosystem

3 Recent cling features, including C++20 support

4 Debugging, optimizing, profiling interpreted code

5 Conclusions

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 1 / 12

Cling at the foundation of HENP computing

Cling is a C++ "interpreter" (actually, an incremental compiler), based on
LLVM/clang.

Using LLVM/clang provides a solid infrastructure for C++ parsing / optimizations
clang used as a library; cling does additional processing, e.g. to parse top-level
statements
// TopLevelStatement.C
sin(12) // so ill-formed C++ but essential to Cling!

Some unique features: value printing, entity redefinition, null ptr checking. . .
root [] int i = 0; ++i // value printing
(int) 1
root [] std::string i{"cling"}; // entity redefinition

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 2 / 12

Cling at the foundation of HENP computing

Cling is a C++ "interpreter" (actually, an incremental compiler), based on
LLVM/clang.

Using LLVM/clang provides a solid infrastructure for C++ parsing / optimizations
clang used as a library; cling does additional processing, e.g. to parse top-level
statements
// TopLevelStatement.C
sin(12) // so ill-formed C++ but essential to Cling!

Some unique features: value printing, entity redefinition, null ptr checking. . .
root [] int i = 0; ++i // value printing
(int) 1
root [] std::string i{"cling"}; // entity redefinition

Foundational role:

HENP’s Python binding (cppyy + PyROOT),

ROOT I/O, and

ROOT’s GUI system (old and web)

depend on cling!

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 2 / 12

Clang-repl

The foundations of cling are being upstreamed under the name clang-repl

Goal
Reduce cling to HENP-specific features

Everything else should be part of llvm / clang
Including patches to llvm (DONE) and clang

Once finalized, there are plans to rebase cling atop clang-repl

DONE Much of incremental interpretation already part of clang-repl since llvm15
DONE Since llvm16: clang supports running statements on the global scope the

way cling does, but with a more robust frontend and backend support
WIP We are currently working on landing cling::Value (RFC) and cling’s CUDA

backend (RFC)
Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 3 / 12

https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493
https://reviews.llvm.org/D146389

Faster cppyy with libInterOp and clang-repl

The new InterOp package provides interoperability primitives to aid bridging C++ with
dynamic languages such as Python.

We are actively migrating Cppyy (powering ROOT’s PyROOT) to enable faster and
more accurate automatic Python to C++ bindings.

Figure 1: Time taken and memory used during class template instantiation for
std::tuple<double, double, ...> and std::vector<...<std::vector<double>>

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 4 / 12

Better Numba integration through libInterop

Basic support for integration with Numba was added to Cppyy.

This allows the use of Python and C++ together without compromising performance.

Through libInterop this integration can be improved by using the same LLVM backend
for both Numba and Cppyy, allowing for duplicate code removal and better inlining.

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 5 / 12

Recent cling features

The upgrade to LLVM13 brought C++20 (concepts, . . .) support into cling!
#include <concepts >
#include <vector>

template <typename T> concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to <std::size_t >;

};

template <Hashable T> void f(const T&) {}

f(std::vector<int>{});

Since ROOT v6.20 (cling-0.7): allow redefining an entity, even as a di�erent kind
root [] int i = 0
(int) 0
root [] float i(float x) { return x + 1; } // Note that 'i' is now a function
root [] i(12.0f)
(float) 13.0000f

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 6 / 12

Recent cling features

The upgrade to LLVM13 brought C++20 (concepts, . . .) support into cling!
#include <concepts >
#include <vector>

template <typename T> concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to <std::size_t >;

};

template <Hashable T> void f(const T&) {}

f(std::vector<int>{});

Since ROOT v6.20 (cling-0.7): allow redefining an entity, even as a di�erent kind
root [] int i = 0
(int) 0
root [] float i(float x) { return x + 1; } // Note that 'i' is now a function
root [] i(12.0f)
(float) 13.0000f

error: no matching function to call to 'f'

note: candidate template ignored: constraints not

satisfied [with T = std::vector<int>, …

note: because std::vector<int, std::allocator<int>>

does not satisfy 'Hashable'

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 6 / 12

Recent cling features

The upgrade to LLVM13 brought C++20 (concepts, . . .) support into cling!
#include <concepts >
#include <vector>

template <typename T> concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to <std::size_t >;

};

template <Hashable T> void f(const T&) {}

f(std::vector<int>{});

Since ROOT v6.20 (cling-0.7): allow redefining an entity, even as a di�erent kind
root [] int i = 0
(int) 0
root [] float i(float x) { return x + 1; } // Note that 'i' is now a function
root [] i(12.0f)
(float) 13.0000f

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 6 / 12

Supporting Apple’s ARM architecture in Cling

ARM Aarch64 was already supported with cling.

But Apple’s ARM was. . . di�erent!

Di�erent ABI, broken backtrace library in macOS, broken exception handling in
JIT, . . .
We worked with Apple + LLVM community to add full support

Generally, lots of problems with macOS + Xcode, e.g. breaking changes between
macOS 13.2 and 13.3; Xcode 13 and 14, etc.

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 7 / 12

Debugging interpreted code

Cling now emits debug symbols (Linux / macOS), allowing the use of a standard
debugger to, e.g. single-step on interpreted code1!
$ export CLING_DEBUG=1
$ gdb --args root.exe -l tutorials/hsimple.C
(gdb) break hsimple
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (hsimple) pending.
(gdb) r
root [0]
Processing tutorials/hsimple.C...

Breakpoint 1, hsimple (getFile=0) at tutorials/hsimple.C:36
36 TString filename = "hsimple.root";
(gdb) n
37 TString dir = gROOT->GetTutorialDir();
(gdb)

1It is recommended to use ROOT Øv6.28/04; older versions are known to have a bug
Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 8 / 12

Profiling interpreted code

Cling can also emit symbol maps for perf (on Linux), enabling the profiling of
interpreted code, e.g.
$ export CLING_PROFILE=1
Run macro hsimple.C and gather performance counters
$ perf record -g -e cycles -- root.exe -l -q tutorials/hsimple.C

Flamegraphs can be generated from the recorded profile as follows2:
$ perf script --no-demangle | c++filt -p | stackcollapse-perf.pl --all |

flamegraph.pl > output.svg

2stack-collapse-perf.pl and flamegraph.pl are part of https://github.com/brendangregg/FlameGraph
Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 9 / 12

https://github.com/brendangregg/FlameGraph

Profiling interpreted code

Cling can also emit symbol maps for perf (on Linux), enabling the profiling of
interpreted code, e.g.
$ export CLING_PROFILE=1
Run macro hsimple.C and gather performance counters
$ perf record -g -e cycles -- root.exe -l -q tutorials/hsimple.C

Flamegraphs can be generated from the recorded profile as follows2:
$ perf script --no-demangle | c++filt -p | stackcollapse-perf.pl --all |

flamegraph.pl > output.svg
Caveat: JIT symbols do not get de-

mangled by perf. Instead, they are

manually demangled using c++filt

2stack-collapse-perf.pl and flamegraph.pl are part of https://github.com/brendangregg/FlameGraph
Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 9 / 12

https://github.com/brendangregg/FlameGraph

Profiling interpreted code

Figure 2: FlameGraph showing Python and JITted code (df102_NanoAODDimuonAnalysis.py)
Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 10 / 12

https://amadio.web.cern.ch/flamegraphs/df102py3.12.svg

Conclusions

Cling now comes with C++20, GCC 13 and macOS 13.3, etc. support:
everything as current as it gets!
Debugging and profiling of interpreted code is now possible!
Now supporting Apple’s ARM and RISC-V architectures; continued Power support
underway with help from IBM

Since 2022: cling foundations have been upstreamed to the LLVM community
under the name clang-repl

There are plans to rebase Cling on top of clang-repl in the future

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 11 / 12

Thanks!

CHEP 2023Thanks!

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 12 / 12

	Cling at the foundation of HENP computing
	Cling in the clang ecosystem
	Recent cling features, including C++20 support
	Debugging, optimizing, profiling interpreted code
	Conclusions

