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Cling at the foundation of HENP computing

Cling is a C++ "interpreter" (actually, an incremental compiler), based on
LLVM/clang.

Using LLVM/clang provides a solid infrastructure for C++ parsing / optimizations
clang used as a library; cling does additional processing, e.g. to parse top-level
statements
// TopLevelStatement.C
sin(12) // so ill-formed C++ but essential to Cling!

Some unique features: value printing, entity redefinition, null ptr checking. . .
root [] int i = 0; ++i // value printing
(int) 1
root [] std::string i{"cling"}; // entity redefinition
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Foundational role:

HENP’s Python binding (cppyy + PyROOT),

ROOT I/O, and

ROOT’s GUI system (old and web)

depend on cling!

Interpreting C++20, with profiling and debugging CHEP2023, 11/05/2023 2 / 12



Clang-repl

The foundations of cling are being upstreamed under the name clang-repl

Goal
Reduce cling to HENP-specific features

Everything else should be part of llvm / clang
Including patches to llvm ( DONE ) and clang

Once finalized, there are plans to rebase cling atop clang-repl

DONE Much of incremental interpretation already part of clang-repl since llvm15
DONE Since llvm16: clang supports running statements on the global scope the

way cling does, but with a more robust frontend and backend support
WIP We are currently working on landing cling::Value (RFC) and cling’s CUDA

backend (RFC)
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https://discourse.llvm.org/t/rfc-handle-execution-results-in-clang-repl/68493
https://reviews.llvm.org/D146389


Faster cppyy with libInterOp and clang-repl

The new InterOp package provides interoperability primitives to aid bridging C++ with
dynamic languages such as Python.

We are actively migrating Cppyy (powering ROOT’s PyROOT) to enable faster and
more accurate automatic Python to C++ bindings.

Figure 1: Time taken and memory used during class template instantiation for
std::tuple<double, double, ...> and std::vector<...<std::vector<double>>
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Better Numba integration through libInterop

Basic support for integration with Numba was added to Cppyy.

This allows the use of Python and C++ together without compromising performance.

Through libInterop this integration can be improved by using the same LLVM backend
for both Numba and Cppyy, allowing for duplicate code removal and better inlining.
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Recent cling features

The upgrade to LLVM13 brought C++20 (concepts, . . . ) support into cling!
#include <concepts >
#include <vector>

template <typename T> concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to <std::size_t >;

};

template <Hashable T> void f(const T&) {}

f(std::vector<int>{});

Since ROOT v6.20 (cling-0.7): allow redefining an entity, even as a di�erent kind
root [] int i = 0
(int) 0
root [] float i(float x) { return x + 1; } // Note that 'i' is now a function
root [] i(12.0f)
(float) 13.0000f
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error: no matching function to call to 'f'

note: candidate template ignored: constraints not

satisfied [with T = std::vector<int>, …

note: because std::vector<int, std::allocator<int>>

does not satisfy 'Hashable'
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Supporting Apple’s ARM architecture in Cling

ARM Aarch64 was already supported with cling.

But Apple’s ARM was. . . di�erent!

Di�erent ABI, broken backtrace library in macOS, broken exception handling in
JIT, . . .
We worked with Apple + LLVM community to add full support

Generally, lots of problems with macOS + Xcode, e.g. breaking changes between
macOS 13.2 and 13.3; Xcode 13 and 14, etc.
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Debugging interpreted code

Cling now emits debug symbols (Linux / macOS), allowing the use of a standard
debugger to, e.g. single-step on interpreted code1!
$ export CLING_DEBUG=1
$ gdb --args root.exe -l tutorials/hsimple.C
(gdb) break hsimple
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (hsimple) pending.
(gdb) r
root [0]
Processing tutorials/hsimple.C...

Breakpoint 1, hsimple (getFile=0) at tutorials/hsimple.C:36
36 TString filename = "hsimple.root";
(gdb) n
37 TString dir = gROOT->GetTutorialDir();
(gdb)

1It is recommended to use ROOT Øv6.28/04; older versions are known to have a bug
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Profiling interpreted code

Cling can also emit symbol maps for perf (on Linux), enabling the profiling of
interpreted code, e.g.
$ export CLING_PROFILE=1
# Run macro hsimple.C and gather performance counters
$ perf record -g -e cycles -- root.exe -l -q tutorials/hsimple.C

Flamegraphs can be generated from the recorded profile as follows2:
$ perf script --no-demangle | c++filt -p | stackcollapse-perf.pl --all |

flamegraph.pl > output.svg

2stack-collapse-perf.pl and flamegraph.pl are part of https://github.com/brendangregg/FlameGraph
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Profiling interpreted code

Figure 2: FlameGraph showing Python and JITted code (df102_NanoAODDimuonAnalysis.py)
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https://amadio.web.cern.ch/flamegraphs/df102py3.12.svg


Conclusions

Cling now comes with C++20, GCC 13 and macOS 13.3, etc. support:
everything as current as it gets!
Debugging and profiling of interpreted code is now possible!
Now supporting Apple’s ARM and RISC-V architectures; continued Power support
underway with help from IBM

Since 2022: cling foundations have been upstreamed to the LLVM community
under the name clang-repl

There are plans to rebase Cling on top of clang-repl in the future
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Thanks!

CHEP 2023Thanks!
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