LI
INJTINEL

Schema Evolution and the TTree in HDF5

Tom Eichlersmith

he/him/his
University of Minnesota
eichl008@umn.edu
CHEP 2023

May 8, 2023

mailto:eichl008@umn.edu

€ Helpful Aspects of the TTree
© Why re-implement?
© HDF5 and HDTree

@ Conclusion

Tom Eichlersmith (UMN) HDTree May 8, 2023 2/11

Helpful Aspects of the T Tree

Interface to Data

record/row/event column/branch
Data viewed hierarchically in-memory

A
while still being well organized on-disk. H e
I'1 B\
D

Schema-Evolution c
User-defined classes can evolve with] - r —
2

version numbers.

“Ragged” Data r, .

Directly represent HEP's common data

“awkwardness” where variables change Figure: Credit to J. Pivarski from talk at 2019 CHEP for
shape from event-to-event diagram idea. CIREEESASED .

Tom Eichlersmith (UMN) HDTree May 8, 2023 3/11

https://indico.cern.ch/event/773049/contributions/3473258/

Why re-implement?

' column/branch
1. Wish to separate the format from the ~ rccora/row/event

A
APl implementation
D

2. Wish to implement native APIs in

other languages /
: o E
3. Take lessons learned from using and r - | — S —
developing with ROOT - 2 — — —
intentionally avoid supporting T Tree P —
API to focus on a more modern API ' . r .
3 3

Tom Eichlersmith (UMN) HDTree May 8, 2023 4/11

HDF5

datasets

I {re

Performance
Chunking and compression available

\

metadata —
/ ~NE = to user configuration.
— metadata HH
=] = Usabilit
HDF5 metadata metadata = y . .
metadata C, C++, and Fortran Official APls -
\ Python, Rust, Julia, and more
= |=]| dataset provided by community
E E meﬁata Support)
— e Industry-supported, popular file
format already used within HEP and
Figure: Diagram of how users can organize data within an other research disciplines
HDF5 file. Leah A. Wasser “Hierarchical Data Formats -
What is HDF5?" Neon Science, Oct 2022. .
Tom Eichlersmith (UMN) HDTree May 8, 2023 5/11

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

HD Tree Meta-Format

I E(dataset)l I I

/meEata
group = group ——
- meEata
= = A (group)
metadata metadata = D (dataset) I l
metadata
[h—
group — dataset B (group)
=

metadata
BH = cmazen | || [l
metadata metadata

1. Atomic data written into HDF5 datasets
2. Description of that data written into HDF5 attributes

3. Datasets organized into groups based on hierarchical in-memory ownership

Specification of HDTree Meta-Format documented online & tomeichlersmith.github.io/hdtree

Tom Eichlersmith (UMN) HDTree May 8, 2023

6/11

https://tomeichlersmith.github.io/hdtree/metaformat_landing_page.html

HDTree C++ API

First APl implementation for this meta-format based on C++17 and HighFive!

Capabilities
B Read and write the HDTree meta-format

B Default compression, chunking, and caching behavior similar to ROOT's handling of
T Trees

B Schema evolution of user-defined classes
Distinctions from ROOT

B No separate dictionary file required — “binding” user classes to organize data is
completely contained in class definition

B No user-juggling of memory addresses
B Follows RAIl principles — i.e. No need to files or explicitly trees

'3 header-only, template-focused C++ API for HDF5 — GitHub:
HDTree May 8, 2023 7/11

https://github.com/BlueBrain/HighFive

Usability

of the HDTree C+-+ API

auto tree = hdtree::Tree::save(
"my-file.hdf5","/path/to/tree");

auto& i_entry = tree.branch<int>(
"i_entry");

auto& rand_data = tree.branch<
std::vector<float>
>("rand_data") ;

for (std::size_t i{0}; i < 5; i++)

{
*i_entry = 1i;
rand_data->resize (i) ;
for (float& pt : *rand_data) {

pt = 1*1i;

© 0 ~N o o A~ W N =

[S = S S G SO TN
A W N R O

+

tree.save () ;

=
(3]

—_
o
(o)

Tom Eichlersmith (UMN)

Code Task: Write a tree with two branches: entry
index and an array whose size is the index and content

is the index squared.

B Create [freel and new lbranches, accessing
branches through handles

B Handles act like smart pointers to
underlying data to avoid unnecessary
copying

B Final writing and closing done when [treel
is destructed

HDTree May 8, 2023 8/11

User Classes

Force documentation of what on-disk data is

1 class MyData {
float x_;
friend class hdtree::access;
template <typename Branch>
void attach(Branch& b) {
b.attach("x", x_);
}
public:
hdtree_class_version (2) ;
MyData () = default;
MyData(float x)
x_{x} {3
void clear () {
x_ = 0.;

© 0 ~N o o A W N

[S = S S G SO TN
A W N R O

15 }
16 };

Tom Eichlersmith (UMN)

B Templated attach method not necessary
but does reduce code boilerplate

B Optional definition of class version —
library reports version discrepancies

B (clear method for resetting class to an
“unset” state

Interaction with [Treel (and underlying [Branch))
the same.

1 auto& my_data = tree.branch<std::
vector <MyData>>("my_data") ;

HDTree May 8, 2023 9/11

Performance

of the HDTree C+-+ API

Generally — on par with ROOT

B Compared writing and reading of variable-length std::vector<float > for a range of entries

B Both close and the faster one depends on computer | run on

Comparison Between HDF5 and ROOT : Production Mode

Specifics of test highly matters

2

Embedding this style of serialization into a more
/ generalized event-processing framework led to a vast

/ difference in speed.

HDF5-based Serialization
ROOT-based Serialization

Real Time [s]

I o
s 8

Output Eile.Size

Framework Speed

NNNNNNNNNNNNNN

Tom Eichlersmith (UMN)

HDTree May 8, 2023 10/11

Summary

B Utilize T Tree-like data organization and access patterns while gaining the benefit of an
industry-standard file format.

B C++ API currently available with performance on-par (if not exceeding) ROOT.

v~ Implementing specialized APls for HDF5 files is easier

v~ HDFS5 files are supported by other data science libraries (e.g. and |pytorch))

v~ Develop data processing frameworks with less fear of memory issues

Moving Forward

B More thorough performance testing
B Start Python API based on well-supported and more general h5py package

	Helpful Aspects of the TTree
	Why re-implement?
	HDF5 and HDTree
	Conclusion

