
Schema Evolution and the TTree in HDF5

Tom Eichlersmith

he/him/his

University of Minnesota

eichl008@umn.edu

CHEP 2023

May 8, 2023
Tom Eichlersmith (UMN) HDTree May 8, 2023 1 / 11

mailto:eichl008@umn.edu


Outline

1 Helpful Aspects of the TTree

2 Why re-implement?

3 HDF5 and HDTree

4 Conclusion

Tom Eichlersmith (UMN) HDTree May 8, 2023 2 / 11



Helpful Aspects of the TTree

Interface to Data

Data viewed hierarchically in-memory
while still being well organized on-disk.

Schema-Evolution

User-defined classes can evolve with
version numbers.

“Ragged” Data

Directly represent HEP’s common data
“awkwardness” where variables change
shape from event-to-event

r1

r1r2

r3

r2

r3

A

B

C D E

record/row/event column/branch

Figure: Credit to J. Pivarski from talk at 2019 CHEP for
diagram idea. Pivarski 2019 CHEP .

Tom Eichlersmith (UMN) HDTree May 8, 2023 3 / 11

https://indico.cern.ch/event/773049/contributions/3473258/


Why re-implement?

1. Wish to separate the format from the
API implementation

2. Wish to implement native APIs in
other languages

3. Take lessons learned from using and
developing with ROOT –
intentionally avoid supporting TTree
API to focus on a more modern API

r1

r1r2

r3

r2

r3

A

B

C D E

record/row/event column/branch

Tom Eichlersmith (UMN) HDTree May 8, 2023 4 / 11



HDF5

Figure: Diagram of how users can organize data within an
HDF5 file. Leah A. Wasser “Hierarchical Data Formats -
What is HDF5?” Neon Science, Oct 2022. online .

Performance
Chunking and compression available
to user configuration.
Usability
C, C++, and Fortran Official APIs -
Python, Rust, Julia, and more
provided by community
Support
Industry-supported, popular file
format already used within HEP and
other research disciplines

Tom Eichlersmith (UMN) HDTree May 8, 2023 5 / 11

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5


HDTree Meta-Format

A (group)

B (group)

C (dataset)

D (dataset)

E (dataset)

1. Atomic data written into HDF5 datasets

2. Description of that data written into HDF5 attributes

3. Datasets organized into groups based on hierarchical in-memory ownership

Specification of HDTree Meta-Format documented online tomeichlersmith.github.io/hdtree

Tom Eichlersmith (UMN) HDTree May 8, 2023 6 / 11

https://tomeichlersmith.github.io/hdtree/metaformat_landing_page.html


HDTree C++ API

First API implementation for this meta-format based on C++17 and HighFive1

Capabilities

■ Read and write the HDTree meta-format

■ Default compression, chunking, and caching behavior similar to ROOT’s handling of
TTrees

■ Schema evolution of user-defined classes

Distinctions from ROOT

■ No separate dictionary file required – “binding” user classes to organize data is
completely contained in class definition

■ No user-juggling of memory addresses

■ Follows RAII principles – i.e. No need to Close files or explicitly Write trees

1a header-only, template-focused C++ API for HDF5 – GitHub: BlueBrain/HighFive

Tom Eichlersmith (UMN) HDTree May 8, 2023 7 / 11

https://github.com/BlueBrain/HighFive


Usability
of the HDTree C++ API

1 auto tree = hdtree ::Tree::save(

2 "my -file.hdf5","/path/to/tree");

3 auto& i_entry = tree.branch <int >(

4 "i_entry");

5 auto& rand_data = tree.branch <

6 std::vector <float >

7 >("rand_data");

8 for (std:: size_t i{0}; i < 5; i++)

9 {

10 *i_entry = i;

11 rand_data ->resize(i);

12 for (float& pt : *rand_data) {

13 pt = i*i;

14 }

15 tree.save();

16 }

Code Task: Write a tree with two branches: entry

index and an array whose size is the index and content

is the index squared.

■ Create tree and new branches, accessing
branches through handles

■ Handles act like smart pointers to
underlying data to avoid unnecessary
copying

■ Final writing and closing done when tree
is destructed

Tom Eichlersmith (UMN) HDTree May 8, 2023 8 / 11



User Classes
Force documentation of what on-disk data is

1 class MyData {

2 float x_;

3 friend class hdtree :: access;

4 template <typename Branch >

5 void attach(Branch& b) {

6 b.attach("x", x_);

7 }

8 public:

9 hdtree_class_version (2);

10 MyData () = default;

11 MyData(float x)

12 : x_{x} {}

13 void clear() {

14 x_ = 0.;

15 }

16 };

■ Templated attach method not necessary
but does reduce code boilerplate

■ Optional definition of class version –
library reports version discrepancies

■ clear method for resetting class to an
“unset” state

Interaction with Tree (and underlying Branch)
the same.

1 auto& my_data = tree.branch <std::

vector <MyData >>("my_data");

Tom Eichlersmith (UMN) HDTree May 8, 2023 9 / 11



Performance
of the HDTree C++ API

Generally – on par with ROOT

■ Compared writing and reading of variable-length std::vector<float> for a range of entries

■ Both close and the faster one depends on computer I run on

100

101

102

103

Re
al

 T
im

e 
[s

]

root
hdf5

10 2

10 1

100

101

102

103

Ou
tp

ut
 F

ile
 S

ize
 [M

B]

root
hdf5

100 101 102 103 104 105 106

N Events

0.25

0.50

0.75

1.00

Ra
tio

 to
 ro

ot

100 101 102 103 104 105 106

N Events

1

2

3

4

Ra
tio

 to
 ro

ot

Comparison Between HDF5 and ROOT : Production Mode

F
ra
m
ew

o
rk

S
p
ee

d

O
u
tp
u
t
F
ile

S
iz
e

Specifics of test highly matters

Embedding this style of serialization into a more
generalized event-processing framework led to a vast
difference in speed.

HDF5-based Serialization LDMX-Software/fire

ROOT-based Serialization LDMX-Software/Framework

Tom Eichlersmith (UMN) HDTree May 8, 2023 10 / 11



Summary

HDTree

■ Utilize TTree-like data organization and access patterns while gaining the benefit of an
industry-standard file format.

■ C++ API currently available with performance on-par (if not exceeding) ROOT.

Implementing specialized APIs for HDF5 files is easier

HDF5 files are supported by other data science libraries (e.g. pandas and pytorch)

Develop data processing frameworks with less fear of memory issues

Moving Forward

■ More thorough performance testing

■ Start Python API based on well-supported and more general h5py package

Tom Eichlersmith (UMN) HDTree May 8, 2023 11 / 11


	Helpful Aspects of the TTree
	Why re-implement?
	HDF5 and HDTree
	Conclusion

