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In the H → 𝛾𝛾 analysis, dominant backgrounds are : 𝛾𝛾 + Jets, 𝛾 + Jets, Multi Jets (MJ)

• The agreement between Data and Monte Carlo (MC) simulated samples for 𝛾 + Jets and MJ is 

not satisfying and the statistics is too low for the training of subsequent discriminants.

Introduction

➡  What if we use data directly to describe those samples ?

• We would like to improve the data driven approach used in the previously published 

analyses using this technique.

GAN based data-driven technique to estimate background processes with a misidentified object in 
collider events. We will showcase this technique for the 𝛾 + Jets background process of the H → 𝛾𝛾 
analysis.
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I. A data driven estimation of the background

➡  Many analyses already use data driven background estimation.  
By reverting the cut on the min photon ID, one needs either to get rid of 
the photon ID variable or to generate a new min photon ID !


• This procedure was used in published analysis from CMS 
experiment [1], new ID was generated by :

1. Deriving a 1D probability density function (PDF) from the 
misidentified photon ID distribution


2. Generating a random min photonID following this PDF, in the 
signal region but below the max photonID


3. However correlations are not preserved

In an event each photon is given a score (photon ID) representing its likelihood to be a photon. Control region in data based 
on photon ID is used to replace MC 𝛾 + Jets / MJ samples (better agreement, more statistics).


➡  Need one photon with very low photon ID : probably a misidentified photon  (as opposed to a prompt photon γ γ

[1] Measurements of ttH production and the CP structure of the Yukawa interaction between 
the Higgs boson and the top quark in the diphoton decay channel, CMS collaboration

➡  We propose a new method to generate a suitable photon (not only ID) 
taking into account these correlations thanks to ML and more 
specifically GAN (Generative Adversarial Networks)

https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2003.10866
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Would it be possible to create an algorithm capable of learning underlying correlations and capable of generating a 
sample statistically independent from the training sample ?


Goodfellow et al. suggested a model consisting of two neural networks competing against each other :

• the “discriminator” sorts samples between real and generated ones - i.e. discriminates fakes

• the “generator” tries to produce samples which will fool the discriminator

II.  Training a GAN
II.a - Generative Adversarial Networks (GANs)
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• Usually, monitoring the loss of a neural network is enough to evaluate its 
performance. It is not the case for GAN where both networks need to perform 
well against the other so their loss stays flat.


➡ We need to set up a more elaborate evaluation procedure
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We use a conditional version of a GAN and we train on 
the misidentified photon (ID, pT, η, ɸ) :
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II.b - Evaluation procedure
• To evaluate the performance of a given model, we rely on different metrics computed for each 

training epoch on the training sample and on a validation sample :
 χ2 metric :





nk : sum of the weights of GANed events in bin k

Nk : sum of the weights of original events in bin k

χ2 =
#bins

∑
k=1

(nk − Nk)2

N2
k

 Log Likelihood metric :





nk : sum of the weights of GANed events in bin k

Nk : sum of the weights of original events in bin k


For the NLL we histogram our events in 4D : 

- transverse momentum of misidentified photon 


- pseudorapidity of misidentified photon 

-  of diphoton pair over its mass

- ID of misidentified photon 


Takes into account correlations by construction

−2 ln(Λ) = − 2
#bins

∑
k=1

Nk ⋅ log(pk), pk =
nk

∑ n

pTγ

ηγ
pT

IDγ

pTγγ

mγγ

II. Training a GAN
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➡ Metrics are fluctuating a lot ! 

II. Training a GAN
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−
2

ln
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Epoch

−
2

ln
Λ

Epoch

1 generation per event

• Seeing how the fluctuations decrease, we decide to go to 100 generation per event


• Then we can find epochs where the model is reaching minima for these metrics and take 
a closer look at its performance

10 generations per event

•  (see slide 9) estimation is statistically limited creating fluctuations in the NLL. These 
fluctuations can be reduced by increasing the number of generation per event :
pk

II. Training a GAN
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•  Trying to find the correct set of observables to train our GAN, we can 
clearly see how hiding information from the network affects its ability to 
learn correlations
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• Discrepancies for low pT, low photonID and 
also in the η gaps, a better preprocessing 
could help


• Preprocessing the input data using a 
quantile transformation

➡ Transformation helps the GAN recover the gaps in η and the core of the ID and pT distributions

Quantile Transformation 
used in preprocessing

Example from scikit-learn’s documentation

III. Generating a full object
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➡ GAN is able to generate a full 
misidentified object that would pass 
the selection criteria  
(see 1D distributions on diagonal)


➡ GAN learns correlations between 
observables of the objects (see 
contours on off-diagonal plots) but 
also correlations with the rest of the 
event (see distance correlation 
coefficients matrix)


➡ This method could be used as a 
general tool to generate other objects 
for other use cases
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➡ GAN is able to generate a full 
misidentified object that would pass 
the selection criteria  
(see 1D distributions on diagonal)


➡ GAN learns correlations between 
observables of the objects (see 
contours on off-diagonal plots) but 
also correlations with the rest of the 
event (see distance correlation 
coefficients matrix)


➡ This method could be used as a 
general tool to generate other objects 
for other use cases

Original correlations
G

AN
ed correlations

II.b - Results

III. Generating a full object



CHEP 2023 - V. Lohezic 19

IV. Conclusions and outlooks

• We developed an evaluation procedure to test the GAN’s generator performance 
and pick the best performing one


• Thanks to GAN we can generate a misidentified photon mimicking the behaviour of 
an object passing the photon selection criteria


• The sample produced for this showcase could be used for any H → 𝛾𝛾 analysis


• This method can be used as a general tool to generate other objects for analyses 
dealing with background coming from misidentified objects


