High-performance end-user analysis with Julia

CHEP 2023, May 11th @ Norfolk, Virginia

Jerry Ling (Harvard University / ATLAS Experiment)
Tamas Gal (Erlangen Centre for Astroparticle Physics)
Who are end users?

Physicists (mostly students) who write analysis code, make plots etc.
What do end users want from a programming language?

- Expressiveness – write less code and do more physics
What do end users want from a programming language?

- Expressiveness – write less code and do more physics
- Performance – shorter time-to-insight, more iterations on analysis ideas
What do end users want from a programming language?

❖ Expressiveness – write less code and do more physics
❖ Performance – shorter time-to-insight, more iterations on analysis ideas
❖ In short: “A language that’s easy to write but runs fast”.
Conventional wisdom: trade-offs

- Expressiveness/Performance often thought as trade-offs
Conventional wisdom: trade-offs

- Expressiveness/Performance often thought as trade-offs
- Q: Why “faster” languages require us to write more verbose, less flexible code?
- E.g. when we write C++:
 - variable type
 - function argument types
 - function return type
Conventional wisdom: trade-offs

- Expressiveness/Performance often thought as trade-offs
- Q: Why “faster” languages require us to write more verbose, less flexible code?
- E.g. when we write C++:
 - variable type
 - function argument types
 - function return type
- A: The more information you write down for the compiler, the easier it is to optimize the emitted native code.
Beyond the traditional trade-offs

❖ Julia claims it’s “easy to write and fast to run”, how can it workaround the trade-off?
❖ One of the ingredients: Specialization in compilation.
Beyond the traditional trade-offs: Specialization

- Consider this function that sums all the elements in an array.
- No type annotation in source code.

```julia
function mysum(ary)
    s = zero(eltype(ary))
    for x in ary
        s += x
    end
    return s
end
```
Beyond the traditional trade-offs: Specialization

- Julia compiles specialized native code for different argument types.
- # of types executed on: 0
- # of compiled native code: 0

```julia
julia> using MethodAnalysis

julia> function mysum(ary)
    s = zero(eltype(ary))
    for x in ary
        s += x
    end
    return s
end

julia> methodinstances(mysum)
[]
```
Beyond the traditional trade-offs: Specialization

- Julia compiles specialized native code for different argument types.
- # of types executed on: 1
- # of compiled native code: 1

```
using MethodAnalysis

function mysum(ary)
    s = zero(eltype(ary))
    for x in ary
        s += x
    end
    return s
end

methodinstances(mysum)

julia> mysum([1, 2, 3])
6

julia> methodinstances(mysum)
1-element:
    MethodInstance for mysum(::Vector{Int64})
```
Beyond the traditional trade-offs: Specialization

- Julia compiles specialized native code for different argument types.
- # of types executed on: 2
- # of compiled native code: 2

```julia
 julia> using MethodAnalysis

 julia> function mysum(ary)
     s = zero(typeof(ary))
     for x in ary
         s += x
     end
     return s
     end

 julia> methodinstances(mysum)

 [ ]

 julia> mysum([1, 2, 3])

 6

 julia> methodinstances(mysum)

 1-element:
  MethodInstance for mysum(::Vector{Int64})

 julia> mysum([1.0, 2.0, 3.0])

 6.0

 julia> methodinstances(mysum)

 2-element:
  MethodInstance for mysum(::Vector{Int64})
  MethodInstance for mysum(::Vector{Float64})
```
Beyond the traditional trade-offs: Specialization

- Julia compiles specialized native code for different argument types.
- # of types executed on: 2
- # of compiled native code: 2

- Just-In-Time (JIT) compile once and cache native code.
- This allows end users to write generic code and retain full performance.

```julia
julia> using MethodAnalysis

julia> function mysum(ary)
    s = zero(eltype(ary))
    for x in ary
        s += x
    end
    return s
end

julia> methodinstances(mysum)
[]

julia> mysum([1, 2, 3])
6

julia> methodinstances(mysum)
1-element:
  MethodInstance for mysum(::Vector{Int64})

julia> mysum([1.0, 2.0, 3.0])
6.0

julia> methodinstances(mysum)
2-element:
  MethodInstance for mysum(::Vector{Int64})
  MethodInstance for mysum(::Vector{Float64})
```
Opportunity for **end users**

Some benefits of using one accessible and performant language:

- Lower barrier for physics students: learning -> production
- Reduce alternating languages for different tasks

How does Julia do in a real analysis?
Julia for end users - a typical workflow

Julia workflow in an ongoing ATLAS analysis, use many projects under JuliaHEP organization.
Data handling

I want to focus on two parts of the workflow:

2. Scaling to cluster (HPC) – smooth transition and debug interactively.
Data handling

End users’ partial wish list for handling root files:

- No boilerplate code
- Fast
- Multi-threading
Data handling

End users’ partial wish list for handling root files:

- No boilerplate code ✓
- Fast
- Multi-threading

```python
using UnROOT
tree = LazyTree("./data.root", "Events")
for evt in tree
    muon_HT = sum(evt.Muon_pt)
    if muon_HT < 200
        continue
    end
#...
end
```
Data handling

End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast ❓

Recall specialization is the source of performance, Julia’s job here seems hard:

1. Know the type of `evt.Muon_pt`
2. Compile specialized `sum()`
3. Infer type of `muon_HT`
4. Compile the best < native code.

```julia
using UnROOT
tree = LazyTree("./data.root", "Events")
for evt in tree
    muon_HT = sum(evt.Muon_pt)
    if muon_HT < 200
        continue
    end
    #...
end
```
Data handling

End users’ partial wish list for handling root files:

- No boilerplate code ✅
- Fast ❓

Recall specialization is the source of performance, Julia’s job here seems hard:

1. Know the type of `evt.Muon_pt`
2. Compile specialized `sum()`
3. Infer type of `muon_HT`
4. Compile the best native code.

```julia
using UnROOT
tree = LazyTree("./data.root", "Events")
for evt in tree
    muon_HT = sum(evt.Muon_pt)
    if muon_HT < 200
        continue
    end
    #...
end
```
Data handling

End users’ partial wish list for handling root files:

❖ No boilerplate code
❖ Fast

Recall specialization is the source of performance, Julia’s job here seems hard:

1. Know the type of `evt.Muon_pt`
2. Compile specialized `sum()`
3. Infer type of `muon_HT`
4. Compile the best < native code.

Actually, if compiler is smart, 1 should imply 2,3,4!

```julia
using UnROOT

tree = LazyTree("./data.root", "Events")
for evt in tree
    muon_HT = sum(evt.Muon_pt)
    if muon_HT < 200
        continue
    end
    #...
end
```
Data handling

End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast ?

Recall specialization is the source of performance, Julia’s job here seems hard:

1. Know the type of `evt.Muon_pt`

Developer’s job:

❖ encode “Branch name” <--- “type” information in the variable types of `evt` and `tree` when parsing the file.

```julia
using UnROOT
tree = LazyTree("./data.root", "Events")
for evt in tree
    muon_HT = sum(evt.Muon_pt)
    if muon_HT < 200
        continue
    end
    #...
end
```
Data handling

End users’ partial wish list for handling root files:

- No boilerplate code ✓
- Fast ✓
- Multi-threading

Benchmark: CMS Open Data, 4l Higgs analysis

*Initially ROOT loop was slower than RDataFrame, fixed after discussion with Enrico Guiraud from ROOT.

```python
using UnROOT  # not code from benchmark
tree = LazyTree("./data.root", "Events")
for evt in tree
    muon_HT = sum(evtMuon.pt)
    if muon_HT < 200
        continue
    end
end
#...
```

‡ More info: http://cern.ch/go/vhR6
Data handling

End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast ✅
❖ Multi-threading ✅

Benchmark: CMS Open Data, 4l Higgs analysis

❖ Julia as a language doesn’t have “global lock” (e.g. Global Interpreter Lock in Python)
❖ UnROOT.jl is thread-safe.

More info: http://cern.ch/go/vhR6
Data handling

A few more things:

❖ Columnar manipulation: each branch follows Julia vector interface, native jagged support
❖ For each event, read from file only when branch is accessed – lazy read.
❖ Already support RNTuple, identical user code
 ➢ I also implemented the RNTuple in uproot

```python
using UnROOT

```
```python
tree = LazyTree("./data.root", "Events")
@threads for evt in tree
    muon_HT = sum(evt.Muon_pt)
    muon_HT < 200 && continue
#...
end
```
Interactive distributed analysis

2. Scaling to cluster (HPC) – smooth transition and debug interactively.
Interactive distributed analysis

End users’ partial wish list for running analysis on cluster:

- Smooth local session -> cluster
- No wait for compilation
- Revise code without re-submitting
Interactive distributed analysis

End users’ partial wish list for running analysis on cluster:

❖ Smooth local session -> cluster
❖ No wait for compilation
❖ Revise code without re-submitting

```julia
# [local code working!]
julia> using ClusterManagers, Distributed, Revise

julia> addprocs(HTCManager(4))
# Waiting for 4 workers: 1 2 3 4 .

julia> @fetchfrom 1 gethostname()
"login02.af.uchicago.edu" # <--- user's login node

julia> @fetchfrom 2 gethostname()
"c028.af.uchicago.edu" # <--- a HTCondor node
```
Interactive distributed analysis

End users’ partial wish list for running analysis on cluster:

❖ Smooth local session -> cluster
❖ No wait for compilation
❖ Revise code without re-submitting

```
# [local code working!]
julia> using ClusterManagers, Distributed, Revise

julia> addprocs(RTCManager(4))
# Waiting for 4 workers: 1 2 3 4 .

julia> @fetchfrom 1 gethostname()
"login02.af.uchicago.edu" # <--- user's login node

julia> @fetchfrom 2 gethostname()
"c028.af.uchicago.edu" # <--- a HTCondor node

julia> @everywhere using WVZAnalysis
```
Interactive distributed analysis

End users’ partial wish list for running analysis on cluster:

❖ Smooth local session -> cluster
❖ No wait for compilation
❖ Revise code without re-submitting

```
# [local code working!]
julia> using ClusterManagers, Distributed, Revise

julia> addprocs(HTCManager(4))
# Waiting for 4 workers: 1 2 3 4 .

julia> @fetchfrom 1 gethostname()
"login02.af.uchicago.edu" # <<< user's login node

julia> @fetchfrom 2 gethostname()
"c028.af.uchicago.edu" # <<< a HTCondor node

julia> @everywhere using WVZAnalysis

julia> run_analysis(..)
# Result looks wrong!
```
Interactive distributed analysis

End users’ partial wish list for running analysis on cluster:

❖ Smooth local session -> cluster
❖ No wait for compilation
❖ Revise code without re-submitting

```
# [local code working!]
julia> using ClusterManagers, Distributed, Revise

julia> addprocs(HTCManager(4))
# Waiting for 4 workers: 1 2 3 4.

julia> @fetchfrom 1 gethostname()
"login02.af.uchicago.edu" # <--- user's login node

julia> @fetchfrom 2 gethostname()
"c028.af.uchicago.edu" # <--- a HTCondor node

julia> @everywhere using WVZAnalysis

julia> run_analysis(..)
# Result looks wrong!

# [Edit source code]

julia> run_analysis(..)
```

Modified code re-compiled
Interactive distributed analysis

- Embarrassingly parallel workload scales nicely
- AF UChicago has 25 physical nodes, fall off when network/storage bottlenecked
Result & Future work

Feedback from ongoing ATLAS analysis:

❖ On Analysis Facility UChicago, all 4.3 TB data with full systematics can be processed in 30 minutes. Near real-time turnaround!
❖ Easy enough to maintain: a high school student\(^1\) was able to efficiently iterate analysis ideas.

[1]: Rafael Jacobsen
Result & Future work

Feedback from ongoing ATLAS analysis:

❖ On Analysis Facility UChicago, all 4.3 TB data with full systematics can be processed in 30 minutes. Near real-time turnaround.
❖ Easy enough to maintain: a high school student was able to efficiently iterate analysis ideas.

Possible future exploration:

❖ Julia as a less thorny escape hatch for Python users (compared to C++)
❖ Explore Julia application upstream of “end-user analysis”
❖ Machine learning without flattening the data
❖ More featureful statistical tools
Backup
Numba also uses LLVM, performance?

- This example taken from Numba tutorial.
- (For Julia faster than Jax example, see Jax GitHub discussion.)

Python + Numba

```python
x = np.arange(100).reshape(10, 10)

@jit(nopython=True)
def go_fast(a):
    trace = 0.0
    for i in range(a.shape[0]):
        trace += np.tanh(a[i, i])
    return a + trace

golang> %timeit go_fast(x)
576 ns
```

Julia

```julia
x = reshape(0:99, 10, 10)

function go_faster(a)
    trace = 0.0
    for i in axes(a, 1)
        trace += tanh(a[i, i])
    end
    return a + trace
end

golang> @btime go_faster(x)
122.176 ns
```
What’s non-Julia in the ATLAS analysis?

- Systematics derivation – need Athena; engineering / labor challenge, not technical.
- Likelihood fitting done in TRexFitter – the group has combined fit with other group in the end.
 - LiteHF.jl can provide statistical fitting, can load `pyhf` JSON workspace, use auto diff
 - LiteHF.jl + Turing.jl gives you Bayesian interpretation
From Source to Machine Code

source text → tokens → AST

lexing → parsing

@code_llvm: LLVM codegen
@code_typed: inlining & type inference

lowering

source text → LLVM IR

@code_llvm: LLVM IR

LLVM IR → typed AST

@code_typed: typed AST

LLVM IR → lowered AST

lowering

LLVM IR → instructions

@code_native

LLVM IR → LLVM IR

LLVM IR → LLVM IR

LLVM IR → LLVM IR

various optimization passes
Different input type compiles to different native code

```plaintext
julia> @code_llvm 2*3
   %2 = mul i64 %1, %0
   ret i64 %2

julia> @code_llvm 2.0*3.0
   %2 = fmul double %0, %1
   ret double %2

julia> @code_native 2*3
   pushq    %rbp
   movq     %rsp, %rbp
   movq     %rdi, %rax
   imulq    %rsi, %rax
   popq     %rbp
   retq

julia> @code_native 2.0*3.0
   pushq    %rbp
   movq     %rsp, %rbp
   vmulsd   %xmm1, %xmm0, %xmm0
   popq     %rbp
   retq
```