
High-performance end-user analysis with Julia 
CHEP 2023, May 11th @ Norfolk, Virginia

Jerry Ling (Harvard University / ATLAS Experiment)
Tamas Gal (Erlangen Centre for Astroparticle Physics)



Who are end users?

Physicists (mostly students) who write analysis code, make plots etc.

2



What do end users want from a programming language?

❖ Expressiveness – write less code and do more physics

3



What do end users want from a programming language?

❖ Expressiveness – write less code and do more physics

❖ Performance – shorter time-to-insight, more iterations on analysis ideas

4



What do end users want from a programming language?

❖ Expressiveness – write less code and do more physics

❖ Performance – shorter time-to-insight, more iterations on analysis ideas

❖ In short: “A language that’s easy to write but runs fast”. 

5



Conventional wisdom: trade-offs

❖ Expressiveness/Performance often thought as trade-offs

6



Conventional wisdom: trade-offs

❖ Expressiveness/Performance often thought as trade-offs

❖ Q: Why “faster” languages require us to write more verbose, less flexible 

code?

❖ E.g. when we write C++:

➢ variable type

➢ function argument types

➢ function return type

7



Conventional wisdom: trade-offs

❖ Expressiveness/Performance often thought as trade-offs

❖ Q: Why “faster” languages require us to write more verbose, less flexible 

code?

❖ E.g. when we write C++:

➢ variable type

➢ function argument types

➢ function return type

❖ A: The more information you write down for the compiler, the easier it is to 

optimize the emitted native code.

8



Beyond the traditional trade-offs

❖ Julia claims it’s “easy to write and fast to run”, how can it workaround the 
trade-off?

❖ One of the ingredients: Specialization in compilation.

9



Beyond the traditional trade-offs: Specialization

❖ Consider this function that sums all the elements in 
an array.

❖ No type annotation in source code.

10



Beyond the traditional trade-offs: Specialization

❖ Julia compiles specialized native code for different 
argument types.

❖ # of types executed on: 0
❖ # of compiled native code: 0

11



❖ Julia compiles specialized native code for different 
argument types.

❖ # of types executed on: 1
❖ # of compiled native code: 1

12

Beyond the traditional trade-offs: Specialization



❖ Julia compiles specialized native code for different 
argument types.

❖ # of types executed on: 2
❖ # of compiled native code: 2

13

Beyond the traditional trade-offs: Specialization



❖ Julia compiles specialized native code for different 
argument types.

❖ # of types executed on: 2
❖ # of compiled native code: 2

❖ Just-In-Time (JIT) compile once and cache native 
code.

❖ This allows end users to write generic code and retain 
full performance.

14

Beyond the traditional trade-offs: Specialization



Opportunity for end users

Some benefits of using one accessible and performant language:

❖ Lower barrier for physics students: learning -> production
❖ Reduce alternating languages for different tasks

How does Julia do in a real analysis?

15



Julia for end users - a typical workflow

16

Julia workflow in an ongoing ATLAS analysis, use many projects under JuliaHEP 
organization.

https://github.com/JuliaHEP/


Data handling

I want to focus on two parts of the workflow:

1. Handling ROOT file – easy for human and fast for machine.
2. Scaling to cluster (HPC) – smooth transition and debug interactively.

17

2.

1.



End users’ partial wish list for handling root files:

❖ No boilerplate code
❖ Fast
❖ Multi-threading

Data handling

18



End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast
❖ Multi-threading

Data handling

19



End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast❓
Recall specialization is the source of performance, Julia’s 
job here seems hard:

1. Know the type of evt.Muon_pt 
2. Compile specialized sum()
3. Infer type of muon_HT 
4. Compile the best < native code.

Data handling

20



End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast❓
Recall specialization is the source of performance, Julia’s 
job here seems hard:

1. Know the type of evt.Muon_pt 
2. Compile specialized sum()
3. Infer type of muon_HT 
4. Compile the best < native code.

Data handling

21



End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast❓
Recall specialization is the source of performance, Julia’s 
job here seems hard:

1. Know the type of evt.Muon_pt 
2. Compile specialized sum()
3. Infer type of muon_HT 
4. Compile the best < native code.

Actually, if compiler is smart, 1 should imply 2,3,4!

Data handling

22



End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast❓
Recall specialization is the source of performance, Julia’s 
job here seems hard:

1. Know the type of evt.Muon_pt 

Developer’s job:

❖ encode “Branch name” <--> “type” information in the 
variable types of evt and tree when parsing the file.

Data handling

23



Data handling

End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast ✅
❖ Multi-threading

Benchmark: CMS Open Data, 4l Higgs analysis

*Initially ROOT loop was slower than RDataFrame, fixed 
after discussion with Enrico Guiraud from ROOT.

24

*not code from benchmark

‡ More info: http://cern.ch/go/vhR6

http://cern.ch/go/vhR6


Data handling

End users’ partial wish list for handling root files:

❖ No boilerplate code ✅
❖ Fast ✅
❖ Multi-threading ✅
Benchmark: CMS Open Data, 4l Higgs analysis

❖ Julia as a language doesn’t have “global lock” (e.g. 
Global Interpreter Lock in Python)

❖ UnROOT.jl is thread-safe.

25‡ More info: http://cern.ch/go/vhR6

*not code from benchmark

http://cern.ch/go/vhR6


Data handling

A few more things:

❖ Columnar manipulation: each branch follows 
Julia vector interface, native jagged support

❖ For each event, read from file only when branch 
is accessed – lazy read.

❖ Already support RNTuple, identical user code
➢ I also implemented the RNTuple in uproot

26



Interactive distributed analysis

1. Handling ROOT file – easy for human and fast for machine.
2. Scaling to cluster (HPC) – smooth transition and debug interactively.

27

2.

1.



Interactive distributed analysis

End users’ partial wish list for running analysis 
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

28



Interactive distributed analysis

End users’ partial wish list for running analysis 
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

29



Interactive distributed analysis

End users’ partial wish list for running analysis 
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

30



Interactive distributed analysis

End users’ partial wish list for running analysis 
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

31



Interactive distributed analysis

End users’ partial wish list for running analysis 
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

32

Modified code re-compiled



Interactive distributed analysis

❖ Embarrassingly parallel workload scales nicely

❖ AF UChicago has 25 physical nodes, fall off when network/storage bottlenecked

33



Result & Future work

Feedback from ongoing ATLAS analysis:

❖ On Analysis Facility UChicago, all 4.3 TB data 
with full systematics can be processed in 30 
minutes. Near real-time turnaround!

❖ Easy enough to maintain: a high school 
student1 was able to efficiently iterate analysis 
ideas.

34
[1]: Rafael Jacobsen

https://github.com/rafaeljacobsen


Result & Future work

Feedback from ongoing ATLAS analysis:

❖ On Analysis Facility UChicago, all 4.3 TB data 
with full systematics can be processed in 30 
minutes. Near real-time turnaround.

❖ Easy enough to maintain: a high school student 
was able to efficiently iterate analysis ideas.

35

Possible future exploration:

❖ Julia as a less thorny escape hatch for 
Python users (compared to C++)

❖ Explore Julia application upstream of 
“end-user analysis”

❖ Machine learning without flattening the 
data

❖ More featureful statistical tools



Backup

36



Numba also uses LLVM, performance?

- This example taken from Numba tutorial.
- (For Julia faster than Jax example, see Jax GitHub discussion.)

37

Python + Numba Julia

https://numba.pydata.org/numba-doc/latest/user/5minguide.html#will-numba-work-for-my-code
https://github.com/google/jax/discussions/11078#discussioncomment-3051481


What’s non-Julia in the ATLAS analysis?

- Systematics derivation – need Athena; engineering / labor challenge, not 
technical.

- Likelihood fitting done in TRexFitter – the group has combined fit with other 
group in the end.

- LiteHF.jl can provide statistical fitting, can load `pyhf` JSON workspace, use auto diff
- LiteHF.jl + Turing.jl gives you Bayesian interpretation

38

https://github.com/JuliaHEP/LiteHF.jl


39

@code_native@code_llvm

@code_typed@code_llvm



Different input type compiles to different native code

40


