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Abstract. Awkward Array is a library for performing NumPy-like computa-
tions on nested, variable-sized data, enabling array-oriented programming on
arbitrary data structures in Python. However, imperative (procedural) solutions
can sometimes be easier to write or faster to run. Performant imperative pro-
gramming requires compilation; JIT-compilation makes it convenient to com-
pile in an interactive Python environment. Various functions in Awkward Ar-
rays JIT-compile a user’s code into executable machine code. They use several
different techniques, but reuse parts of each others’ implementations. We dis-
cuss the techniques used to achieve the Awkward Arrays acceleration with JIT-
compilation, focusing on RDataFrame, cppyy, and Numba, particularly Numba
on GPUs: conversions of Awkward Arrays to and from RDataFrame; stan-
dalone cppyy; passing Awkward Arrays to and from Python functions compiled
by Numba; passing Awkward Arrays to Python functions compiled for GPUs
by Numba; and header-only libraries for populating Awkward Arrays from C++
without any Python dependencies

1 Introduction

Awkward Array library [1] offers its users an array-oriented programming style in a dynam-
ically typed language. The advantage of the array-oriented calculations is that they fit the
data analysis workflow better, considering the large amounts of data which a physicist typi-
cally loads into an interactive environment. Moreover,the code that performs one operation
on all data is easy enough to write, then observe the intermediate results on distributions,
and reiterate. The imperative code, on the other hand, is better for the stage after the inter-
active exploration, but the performant imperative programming requires compilation. The
loops may take longer to write, especially when fitting into a Just-In-Time (JIT)-compiler
and getting the compile-time types correctly, but are often self-explanatory and faster. It is
not uncommon for a user analysis code to be expressed in a traditional high-performance,
statically typed language - C++, and a statically typed language requires compilation.

The JIT-compilation makes it convenient to compile in an interactive Python environ-
ment. Several JIT-compilation techniques are used to achieve the desired acceleration. The
Awkward Array functions JIT-compile a user’s code into executable machine code. They use
different techniques, but reuse parts of each others’ implementations.

The techniques discussed in this article are focusing on integrating RDataFrame [3], cp-
pyy [4], and Numba [5], particularly Numba on GPUs. These include Awkward Arrays to
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and from RDataFrame conversions, the standalone cppyy integration, passing Awkward Ar-
rays to and from Python functions compiled by Numba, passing Awkward Arrays to Python
functions compiled for GPUs by Numba, and populating Awkward Arrays from C++without
any Python dependencies using a header-only library.

2 Awkward Arrays and RDataFrame

The Awkward Arrays can be converted to the RDataFrame columns and the RDataFrame
columns can be converted to Awkward Arrays as described in detail in [6] and [7].

The user benefits from a faster execution of both the ROOT C++ functions and the user-
defined pure C++ functions. Here is an example of such conversion shown beneath.

import awkward as ak

df = ak.to_rdataframe({"Events": array})

rdf = (
df.Filter("Events.nMuon() == 2")
.Filter("Events.Muon_charge()[0] != Events.Muon_charge()[1]")
.Define("dimuon_mass", """

// this is C++
return std::sqrt(2 * Events.Muon_pt()[0] * Events.Muon_pt()[1]

* (std::cosh(Events.Muon_eta()[0] - Events.Muon_eta()[1])
- std::cos(Events.Muon_phi()[0] - Events.Muon_phi()[1])));

"""))

The ak.to_rdataframe function presents a view of an Awkward Array as an
RDataFrame source. The ak.from_rdataframe function converts the selected columns as
native Awkward Arrays. The implementation leverages on a zero-copy Awkward Array view
and implements all for-loops on data in C++.

The handle to this Array view is a lightweight 40-byte C++ object allocated on the stack.
The generated RDataSource takes pointers into the original array data via this view. Next, the
column readers are generated based on the run-time type of the views. Finally, the readers
are passed to a generated source derived from ROOT::RDF::RDataSource.

The ak.from_rdataframe function converts the selected columns as native Awkward
Arrays. The templated C++ header-only implementation and the dynamically generated C++
code are used to extract the columns’ types and data.

import ROOT

df = ROOT.RDataFrame("Events",
"root://eospublic.cern.ch//eos/opendata/cms/derived-data/"
"AOD2NanoAODOutreachTool/Run2012BC_DoubleMuParked_Muons.root")

array = ak.from_rdataframe(
df, columns=("Muon_charge", "Muon_eta", "Muon_mass",

"Muon_phi", "Muon_pt", "nMuon")
)

This array has type



type: 61540413 * {
Muon_charge: var * int32,
Muon_eta: var * float32,
Muon_mass: var * float32,
Muon_phi: var * float32,
Muon_pt: var * float32,
nMuon: uint32

}

and some of its values look like

[{Muon_charge: [-1, -1], Muon_eta: [1.07, -0.564], ...},
{Muon_charge: [1, -1], Muon_eta: [-0.428, 0.349], ...},
{Muon_charge: [1], Muon_eta: [2.21], Muon_mass: [0.106], ...},
...,
{Muon_charge: [-1, 1], Muon_eta: [-2.15, 0.291], ...}]

On the one hand, the users who do their analysis entirely in Python ecosystem can benefit
from faster execution using ROOT C++ functions, or pure C++, in an otherwise Awkward
analysis at full speed. The performance cost of converting Awkward Arrays into RDataFrame
is negligible, since it is a zero-copy view.

On the other hand, those who prefer C++, ROOT, and RDataFrame, have an ability to
convert their data into Awkward Arrays in order to leverage the tools available in the wider
Scientific Python ecosystem.

3 Standalone cppyy

Like ROOT and RDataFrame, cppyy allows a user to write C++ and JIT-compile it to use it
from Python. The C++ code can be included to Python from a C++ file or written directly as
a Python string. But cppyy can be installed without the entire ROOT package and Awkward
Array’s interface to it is more low-level: users can write C++ functions that operate on whole
arrays, multiple arrays, and return arrays.

The ak.Array, the Python class for all Awkward Arrays, implements a magic function
__cast_cpp__ that is called by cppyy to determine a C++ type of the array. The Numba
implementation [8] is reused here to generate a C++ array view on demand. The generated
ArrayView C++ class hashed type is registered as a cpp_type Python string attribute of the
ak.Array class. The cppyy maps the C++ class type as a string to a Python type. The down
side is that the user cannot redefine the function. Each function must have a unique name.
This is similar to the PyROOT interpreter, because an earlier version of cppyy is used to bind
Python and C++ in PyROOT.

The user does not need to know what cpp_type is - the cpp_type is generated on de-
mand when the array needs to be passed to the C++ function.

array = ak.Array([
[{"x": 1, "y": [1.1]}, {"x": 2, "y": [2.2, 0.2]}],
[],
[{"x": 3, "y": [3.0, 0.3, 3.3]}],

])

source_code_cpp = """



template<typename T>
double go_fast_cpp(T& awkward_array) {
double out = 0.0;
for (auto list : awkward_array) {
for (auto record : list) {
for (auto item : record.y()) {
out += item;

}
}

}
return out;
}
"""
cppyy.cppdef(source_code_cpp)

out = cppyy.gbl.go_fast_cpp[array.cpp_type](array)
assert out == ak.sum(array["y"])

The cppyy version that is used must be 3.1 or later. The cppyy library can construct an
object of a previously declared type based on an arguments. This new feature is not available
in the earlier versions. cppyy implements an implicit instantiation from __cast_cpp__
returning a tuple.

4 Awkward Arrays and Numba

Numba is a JIT-compiler of functions with Python syntax, and Awkward Arrays can be passed
to and from Numba-compiled functions with a similar interface as cppyy. Numba can be
used in contexts in which acceleration is needed, but C++ is not—it allows users to write
accelerated code in the same Python language as the rest of their code, albeit in a subset of
that language (not all Python code can be compiled).

Numba infers the argument types at call time, and generates optimized code based on this
information. Numba also compiles separate specializations depending on the input types.

import numba as nb, numpy as np

@nb.jit
def path_length(array):
result = np.zeros(len(array), dtype=np.float32)
for i, row in enumerate(array):
result[i] = 0
for j, val in enumerate(row):
result[i] += val

return result

The implementation to pass Awkward Arrays to and from Python functions compiled by
Numba defines a numba_type property of an ak.Array that is a type of a generated C++
Array view, as discussed before. Awkward Arrays can be iterated over in Numba-compiled
functions using zero-copy views.



5 Python functions compiled for GPUs by Numba

Numba can also compile code for Nvidia GPUs through LLVM’s CUDA backend, and Awk-
ward Arrays can be passed as arguments into such functions. Currently, the extension needs
to be defined by a user in a function decorator (as extensions=[ak.numba.cuda] below),
but this requirement will be removed in a future version of Numba.

import cupy as cp

# make an Awkward Array of variable-length lists on the GPU with CuPy
N = 2**20
counts = cp.random.poisson(1.5, N).astype(np.int32)
content = cp.random.normal(0, 45, int(counts.sum())).astype(np.float32)
array = ak.unflatten(content, counts)

@nb.cuda.jit(extensions=[ak.numba.cuda])
def path_length(out, array):

tid = nb.cuda.grid(1)
if tid < len(array):

out[tid] = 0
for i, x in enumerate(array[tid]):

out[tid] += x

blocksize = 256
numblocks = (N + blocksize - 1) // blocksize

result = cp.empty(len(array), dtype=np.float32)
path_length[numblocks, blocksize](result, array)

6 Header-only libraries

To create Awkward Arrays in C++ without any dependence on Python, we provide a separate
set of header-only libraries that implement an awkward::layoutbuilder [9] that builds up
an array by appending elements and then shares that array through basic C types (raw array
buffers and a JSON-formatted string the convey structure).

#include "awkward/LayoutBuilder.h"
using awkward::layoutbuilder;

// instantiating layoutbuilder types (type aliases omitted for brevity)
enum Field : std::size_t {one, two};
using UserDefinedMap = std::map<std::size_t, std::string>;
UserDefinedMap fields_map({

{Field::one, "one"},
{Field::two, "two"}

});

RecordBuilder<
RecordField<Field::one, NumpyBuilder<double>>,
RecordField<Field::two, ListOffsetBuilder<int64_t,



NumpyBuilder<int32_t>>>
> builder(fields_map);

// executable code to create and fill the layoutbuilder
auto& one_builder = builder.field<Field::one>();
auto& two_builder = builder.field<Field::two>();

one_builder.append(1.1);
auto& two_subbuilder = two_builder.begin_list();
two_subbuilder.append(1);
two_builder.end_list();

one_builder.append(2.2);
two_builder.begin_list();
two_subbuilder.append(1);
two_subbuilder.append(2);
two_builder.end_list();

7 Summary and future plans

The Awkward Array library was designed around array-oriented programming, in part be-
cause imperative programming in Python is impractical at large scales. However, this library
also provides many ways to access the same data—without copying it—in JIT-compiled con-
texts, enabling imperative computing at large scales.

While these bridges may be used directly by users, they are also pathways to future fea-
tures. For example, automatic bindings from Kaitai Struct [10] to Awkward Arrays are in
development, and these rely heavily on the header-only awkward::layoutbuilder. JIT-
compilation in Julia [11] is also in development, borrowing from the patterns set by C++ and
Numba integration.
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