

ePIC-Analysis Common Physics Analysis Software for the EIC

Christopher Dilks

Duke University

for the ePIC Collaboration

Research supported by the

Office of Science

ePIC and the Electron-Ion Collider

Some (recent) History

ePIC-Analysis - CHEP2023 - Norfolk, VA - Christopher Dilks

Different Designs... and Different Software*...

Different Designs... and Different Software*...

ePIC-Analysis: Common ahysics analysis framework

ePIC-Analysis

- Adapted to various upstream simulation sources
- Common physics reconstruction methods for DIS, SIDIS, and Jets
- Common physics analysis techniques
- Continuous Integration to benchmark detector design evolution

ePIC-Analysis - CHEP2023 - Norfolk, VA - Christopher Dilks

Q² Weighting

- \clubsuit Cross section falls rapidly with $Q^2 \rightarrow high Q^2$ events are rare
 - Generate events in various bins of Q²
 - · Re-weight them using the cross sections to combine their data
 - Populates statistics even at very high Q²
 - Allows for study of a broad range of Q², without having to wait for rare high Q² events

 \Rightarrow ePIC-Analysis provides a common Q² weighting implementation

Q2 Bins

- 1 − 10 GeV²
- $10 100 \text{ GeV}^2$
- 100 1000 GeV²
- 1000 GeV² and above

Continuous Integration

Runs for every git commit (on a pull request)

- Could receive triggers from upstream simulation and reconstruction repositories
- Make a change in geometry or reconstruction, check the impact on the physics

Job matrices:

- ePIC full simulation / Delphes fast simulation / previous designs
- With / without radiative corrections
- Kinematics reconstruction methods (electron / hadronic / mixed / ...)

Build tests and Valgrind

Artifacts: plots

- Coverage
- Resolution
- Multidimensional binning

Focusing on semi-inclusive pion production from electron and proton beam energies of 18 and 275 GeV

$$e + p \to e + \pi^+ + X$$

<u>Artifacts</u>

- Histograms in bins of
 - (X, Q²)
 - (ŋ, p)

Semi-Inclusive Deep Inelastic Scattering (SIDIS) Cuts

W > 3 GeV 0.01 < y < 0.95 0.2 < z < 0.9 $x_F > 0$ $p_T(\text{lab}) > 0.1 \text{ GeV}$

Comparison of two different ePIC design options

UNIVERSITY

Comparison of two different ePIC design options

Study SIDIS in a *particle collider* context

Kinematics (x,Q²,y) can be obtained from initial and final particle momenta

Need to develop tools for accurate reconstruction of these event kinematics

Available methods in ePIC-Analysis

Prog.Part.Nucl.Phys. 69 (2013) 28-84, 1208.6087 [hep-ph]

Kinematics Reconstruction With Machine Learning

AI for kinematics reconstruction shows promising results!

C. Pecar, 2nd Workshop on AI for the EIC (Oct. 2022)

See also M. Diefenthaler, et al., Eur.Phys.J.C 82 (2022) 11, 1064

Output Data Structures

ROOT objects

- Specific TTrees
 - SIDIS
 - Jets
 - and more

• Histograms

Support for multidimensional binning of objects

- 1D Binning of observables is not enough!
- The cross section is multidimensional, thus we need to perform analysis in multidimensional bins

Multidimensional Binning

- Problem: The need for multidimensional analysis caused deeply nested for loops to spread throughout epic-analysis
 - Not maintainable and not generalized
 - Very susceptible to bugs

```
for (auto z_bin : z_bins) {
                                  (z, y, x, Q^2)
  for (auto y_bin : y_bins) {
   action_before_x_Q2_subloop( z_bin, y_bin );
    for (auto Q2_bin : Q2_bins) {
     for (auto x_bin : x_bins) {
       action_for_each_bin( z_bin, y_bin, Q2_bin, x_bin );
      }
   action_after_x_Q2_subloop( z_bin, y_bin );
```


https://github.com/c-dilks/adage

- Generalize multidimensional binning implementation with a Directed Acyclic Graph (DAG)
 - Fully connected layers of 1D bins
 - One full path from root node to leaf node == 1 multidimensional bin
- Store 1st order functions as additional "control nodes", between layers of 1D bin nodes
 - Executable during depth-first traversal
 - Attach your code to the data structure and run it!


```
for (auto z_bin : z_bins) {
 for (auto y_bin : y_bins) {
   action_before_x_Q2_subloop( z_bin, y_bin );
   for (auto Q2_bin : Q2_bins) {
     for (auto x_bin : x_bins) {
       action_for_each_bin( z_bin, y_bin, Q2_bin, x_bin );
   action_after_x_Q2_subloop( z_bin, y_bin );
 }
```


UNIVERSITY

ePi

// define bins

• • •

// define lambdas

action_before_x_Q2_subloop = ... ;
action_after_x_Q2_subloop = ... ;
action_for_each_bin = ... ;

// attach lambdas to the DAG

Adage->BeforeSubloop({"x","q2"}, action_before_x_Q2_subloop); Adage->AfterSubloop({"x","q2"}, action_after_x_Q2_subloop); Adage->Payload(action_for_each_bin);

// run
Adage->Execute();

Adage

- PIC-Analysis is a common framework for physics analysis
- Supports various upstream sources from the present as well as the past
- Was critical for the ATHENA proposal design
- Continues to support ePIC and will be integrated in the full software stack
 - See David Lawrence's talk: <u>EIC Software Overview</u>

... and before concluding ...

Thanks to Our Contributors!

And many more who have contributed advice and help!

BACKUP

ePIC-Analysis Structure

Kinematics calculations performed in dedicated class(es)

- Used for both reconstructed and MC generated particles
- Inputs: beams, scattered electron, hadronic final state, and observed particles (single hadrons for SIDIS, jets, etc.)

Calculations

- Inclusive variables (x, Q2, W, y, ...)
 - <u>6 methods</u>: electron, J.B., double angle, mixed, sigma, eSigma
- SIDIS variables (p, p_T , z, ϕ_h , ...)
- Jet variables (z, p_T , j_{\perp} , ...)
- In general uses Lorentz invariant calculations; boost to specific frames when needed
- Future Plan
 - Cross check with upstream calculations from the reconstruction framework and/or upstream our methods

