
Kyle J. Knoepfel
11 May 2023
26th International Conference on Computing in High Energy & Nuclear Physics

Meld: Exploring the feasibility of a framework-less framework

What type of framework does DUNE need?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20232

What type of framework does DUNE need?

• What DUNE has:
DUNE’s current framework (art)
originates from a collider-physics
experiment, steeped in event-based
concepts.

• But:
The “event” is not always a helpful
concept for neutrino experiments.

• What DUNE needs…

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20233

What type of framework does DUNE need?

https://doi.org/10.48550/arXiv.2210.15665

• What DUNE has:
DUNE’s current framework (art)
originates from a collider-physics
experiment, steeped in event-based
concepts.

• But:
The “event” is not always a helpful
concept for neutrino experiments.

• What DUNE needs…

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20234

https://doi.org/10.48550/arXiv.2210.15665

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20235

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20236

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20237

🙂

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

The framework must be able to break apart events into smaller chunks for more granular
processing, and then stitch those chunks back together into an event.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20238

🙂

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

The framework must be able to break apart events into smaller chunks for more granular
processing, and then stitch those chunks back together into an event.

Okay, tricky but probably doable.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 20239

🙂

😐

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

The framework must be able to break apart events into smaller chunks for more granular
processing, and then stitch those chunks back together into an event.

Okay, tricky but probably doable.

The framework should support “sliding event windows” to provide “edge effect” coverage for
extended time readouts during supernovae events.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202310

🙂

😐

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

The framework must be able to break apart events into smaller chunks for more granular
processing, and then stitch those chunks back together into an event.

Okay, tricky but probably doable.

The framework should support “sliding event windows” to provide “edge effect” coverage for
extended time readouts during supernovae events.

Cannot take advantage of statistical independence of events, memory issues, etc.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202311

🙂

😐

☹

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

The framework must be able to break apart events into smaller chunks for more granular
processing, and then stitch those chunks back together into an event.

Okay, tricky but probably doable.

The framework should support “sliding event windows” to provide “edge effect” coverage for
extended time readouts during supernovae events.

Cannot take advantage of statistical independence of events, memory issues, etc.

The framework should make minimal assumptions about the data model.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202312

🙂

😐

☹

Some DUNE framework requirements (paraphrased)

Physics algorithms should be framework-agnostic.

Fine, assuming it’s a requirement for those writing algorithms.

The framework must be able to break apart events into smaller chunks for more granular
processing, and then stitch those chunks back together into an event.

Okay, tricky but probably doable.

The framework should support “sliding event windows” to provide “edge effect” coverage for
extended time readouts during supernovae events.

Cannot take advantage of statistical independence of events, memory issues, etc.

The framework should make minimal assumptions about the data model.

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202313

🙂

😐

☹

Some DUNE framework requirements (paraphrased)

That sounds like a framework-less framework...😧

• How many of art’s assumptions can be relaxed/removed to meet DUNE’s needs?

But is it so crazy?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202314

• How many of art’s assumptions can be relaxed/removed to meet DUNE’s needs?
• Asking this question has resulted in a 2-year project called Meld, a laboratory-

directed R&D project based at Fermilab.
• The goal is to explore options, not necessarily to provide software.

But is it so crazy?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202315

• How many of art’s assumptions can be relaxed/removed to meet DUNE’s needs?
• Asking this question has resulted in a 2-year project called Meld, a laboratory-

directed R&D project based at Fermilab.
• The goal is to explore options, not necessarily to provide software.

But is it so crazy?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202316

• Meld has been heavily influenced by:
Regular discussions with DUNE experts

Existing framework capabilities and limitations

Functional programming (e.g. Haskell)

Mathematics (set, graph, and category theory)

• How many of art’s assumptions can be relaxed/removed to meet DUNE’s needs?
• Asking this question has resulted in a 2-year project called Meld, a laboratory-

directed R&D project based at Fermilab.
• The goal is to explore options, not necessarily to provide software.

But is it so crazy?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202317

Prerequisites
Support user-provided algorithms written
in C++20 or newer

Design for concurrency

Favor community-provided software

• Meld has been heavily influenced by:
Regular discussions with DUNE experts

Existing framework capabilities and limitations

Functional programming (e.g. Haskell)

Mathematics (set, graph, and category theory)

Looking at the data

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202318

The following discussion describes a logical organization of data.
It does not imply a specific in-memory representation of data.

Looking at the data (set)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202319

𝓡

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202320

𝓡

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202321

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202322

𝓔𝟓 𝓔𝟔 𝓔𝟕

𝓔𝟏 𝓔𝟐 𝓔𝟑

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

𝓔𝟖

𝓔𝟒

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202323

𝓔𝟓 𝓔𝟔 𝓔𝟕

𝓔𝟏 𝓔𝟐 𝓔𝟑

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

b

𝓔𝟖

𝓔𝟒

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202324

b b b

b b b b
𝓔𝟓 𝓔𝟔 𝓔𝟕

𝓔𝟏 𝓔𝟐 𝓔𝟑

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

b

𝓔𝟖

𝓔𝟒

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202325

b b b b

b b b b
𝓔𝟓 𝓔𝟔 𝓔𝟕

𝓔𝟏 𝓔𝟐 𝓔𝟑

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

𝓔𝟖

𝓔𝟒

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202326

a a a a

a a a a

b b b b

b b b b
𝓔𝟓 𝓔𝟔 𝓔𝟕 𝓔𝟖

𝓔𝟏 𝓔𝟐 𝓔𝟑 𝓔𝟒

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡
c c c c

c c c c

J K J K

J K J K

W

Looking at the data (product mappings)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202327

a a a a

a a a a

b b b b

b b b b

f f f f

f f f f𝓔𝟓 𝓔𝟔 𝓔𝟕

𝓔𝟏 𝓔𝟐 𝓔𝟑

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡
c c c c

c c c c

J K J K

J K J K

W

𝓔𝟖

𝓔𝟒

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202328

a a

a a

b b

b b

f f

f f𝓔𝒌 𝓔𝒍

𝓔𝒊 𝓔𝒋

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡
Looking at the data (product sequences)

c c

c

J
K J

K

J
K J

K

W

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202329

𝓡
Looking at the data (product sequences)

c

W

𝓢𝜶

J
K

𝓔𝒏

a

f

c

b

Looking at the data (product sequences)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202330

𝓡
𝓢𝜶

𝓔𝒏

a

f

c

b

J K

W

Looking at the data (product sequences)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202331

𝓡
𝓢𝜶

𝓔𝒏

a

f

c

b

J K

W

We can make the following replacement (e.g.):

depicting the data products labeled c from 8
events as a sequence.

= 𝑐 !

Looking at the data (product sequences)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202332

f

𝑎 !

(𝑏)!

𝑐 !

𝐽 " 𝐾 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202333

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
f

𝑎 !

(𝑏)!

𝑐 !

𝐽 " 𝐾 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202334

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
This is a map or transform.f

𝑎 !

(𝑏)!

𝑐 !

𝐽 " 𝐾 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202335

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements
𝑐 / to a shorter sequence of elements 𝐾 0 at a

higher level of nesting, using a function 𝑔1:

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202336

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements
𝑐 / to a shorter sequence of elements 𝐾 0 at a

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202337

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

𝐽, 𝐾 "

h0

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements
𝑐 / to a shorter sequence of elements 𝐾 0 at a

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

• An operation that pairs element of two sequences
𝐽 0 and 𝐾 0 into one sequence 𝐽, 𝐾 0:

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202338

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements
𝑐 / to a shorter sequence of elements 𝐾 0 at a

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

• An operation that pairs element of two sequences
𝐽 0 and 𝐾 0 into one sequence 𝐽, 𝐾 0:

This is a zip.

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

𝐽, 𝐾 "

h0

What type of things are we dealing with?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202339

• An operation that converts a sequence of elements
𝑎 / to a sequence of elements 𝑏 / of the same

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements
𝑐 / to a shorter sequence of elements 𝐾 0 at a

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

• An operation that pairs element of two sequences
𝐽 0 and 𝐾 0 into one sequence 𝐽, 𝐾 0:

This is a zip.

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

𝐽, 𝐾 "

h0

These have to do with
higher-order functions.

Graph of data-product sequences

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202340

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

𝐽, 𝐾 "

h0

View Nodes Edges
Data-centric Data products Mappings This work

Graph of data-product sequences

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202341

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

𝐽, 𝐾 "

h0

View Nodes Edges
Data-centric Data products Mappings This work

Map-centric Mappings Data products More common

Graph of data-product sequences

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202342

The user specifications are the same with either view:

• Which data products to process
• The data set(s) that contain those products (event, etc.)
• Which higher-order function to use (transform, etc.)
• Which user-defined function to serve as the operation to

the higher-order function.
• Allowed concurrency of each function.

The focus is just different.

f

𝑎 !

(𝑏)!

𝐽 "

𝓡
𝓢𝜶

𝓔𝒏

𝑊 #

𝑐 !

𝐾 "

g0

𝐽, 𝐾 "

h0

View Nodes Edges
Data-centric Data products Mappings This work

Map-centric Mappings Data products More common

How are data products and their mappings supported now?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202343

With art, users do not transparently interact with data
products. They instead:
• Implement functions based on datasets (e.g. event)
• “Open” the dataset to retrieve and insert products

𝓡

endRun(𝓡)

endSubRun(𝓢𝜶)

produce(𝓔𝒏)

𝓡
𝓢𝜶

𝓔𝒏

How are data products and their mappings supported now?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202344

With art, users do not transparently interact with data
products. They instead:
• Implement functions based on datasets (e.g. event)
• “Open” the dataset to retrieve and insert products

Some of this is historical and due to:
• The object-oriented nature of the framework.
• Technical limitations of C++ whenever the framework

was designed.

𝓡

endRun(𝓡)

endSubRun(𝓢𝜶)

produce(𝓔𝒏)

𝓡
𝓢𝜶

𝓔𝒏

How are data products and their mappings supported now?

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202345

With art, users do not transparently interact with data
products. They instead:
• Implement functions based on datasets (e.g. event)
• “Open” the dataset to retrieve and insert products

Some of this is historical and due to:
• The object-oriented nature of the framework.
• Technical limitations of C++ whenever the framework

was designed.

𝓡

endRun(𝓡)

endSubRun(𝓢𝜶)

produce(𝓔𝒏)

𝓡
𝓢𝜶

𝓔𝒏

Results in a lot of software mechanics...

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202346

f

𝑎 !

(𝑏)!

𝓔𝒏

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202347

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

Tracks make_tracks(Hits const& hits) { ... }

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202348

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

art

Tracks make_tracks(Hits const& hits) { ... }

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202349

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

art#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

This is just a transform?😬

Tracks make_tracks(Hits const& hits) { ... }

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202350

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

art

Tracks make_tracks(Hits const& hits) { ... }

This is just a transform?😬

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202351

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

art

Tracks make_tracks(Hits const& hits) { ... }

This is just a transform?
Nobody wants this.

😬

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202352

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

Meld
#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}Tracks make_tracks(Hits const& hits) { ... }

A better way…

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202353

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

Meld
#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}Tracks make_tracks(Hits const& hits) { ... }

• Minimal boilerplate.
A better way…

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202354

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}Tracks make_tracks(Hits const& hits) { ... }

A better way…
• Minimal boilerplate.
• Event is now a label.

Meld

• Create tracks from hits for each event.

Example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202355

Tracks make_tracks(Hits const& hits) { ... }

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}

A better way…
• Minimal boilerplate.
• Event is now a label.
• Higher-order function is now explicit.

Meld

• https://github.com/knoepfel/meld (not even alpha release)
• Implemented using oneTBB’s flow graph

Meld implementation

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202356

Supported construct User function

Transform (Map) 𝑓 𝒂 → 𝒃

Standard data-processing idiomsFilter 𝑓 𝒂 → Boolean

Monitor 𝑓 𝒂 → Void

Reduction (Fold) 𝑓𝒄 𝒂 → 𝒄
For splitting and then combining events

Splitter (Unfold) 𝑓" 𝒂 → 𝒅 "

Zip — For combining arguments to user functions

Sliding window — To do: For sliding over adjacent events

https://github.com/knoepfel/meld

Sample hierarchies tested by Meld

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202357

[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ run: 1

│
└ subrun: 2

│
└ event: 10

[info] CPU efficiency: 259.55%
[info] Max. RSS: 6.205 MB

Performance numbers are preliminary

art-based hierarchy

art-based hierarchy

Sample hierarchies tested by Meld

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202358

[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ run: 1

│
└ subrun: 2

│
└ event: 10

[info] CPU efficiency: 259.55%
[info] Max. RSS: 6.205 MB

Performance numbers are preliminary

[info] Number of worker threads: 12
[info] Processed levels:

job
│
├ trigger primitive: 10
│
└ run: 2

│
└ event: 10

[info] CPU efficiency: 230.81%
[info] Max. RSS: 6.136 MB

Non-trivial hierarchy

art-based hierarchy

Non-trivial hierarchy

Sample hierarchies tested by Meld

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202359

[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ run: 1

│
└ subrun: 2

│
└ event: 10

[info] CPU efficiency: 259.55%
[info] Max. RSS: 6.205 MB

[info] Number of worker threads: 12
[info] Processed levels:

job
│
├ trigger primitive: 10
│
└ run: 2

│
└ event: 10

[info] CPU efficiency: 230.81%
[info] Max. RSS: 6.136 MB

[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ event: 100000

[info] CPU efficiency: 882.50%
[info] Max. RSS: 16.527 MB

Flat hierarchy

Performance numbers are preliminary

• Supporting DUNE’s framework needs suggests rethinking framework concepts.

Summary

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202360

“Ways	change,	Stil.”		—Paul	from	Dune	by	Frank	Herbert	

• Supporting DUNE’s framework needs suggests rethinking framework concepts.
• Meld seeks to address these needs by considering a framework job as a

• It is not a framework-less framework, but it is less framework coupling.
• Preliminary work indicates this is a productive avenue to pursue.

Summary

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202361

(1) graph of data products connected by
(2) user-provided operations of

(3) higher-order functions.

“Ways	change,	Stil.”		—Paul	from	Dune	by	Frank	Herbert	

• Supporting DUNE’s framework needs suggests rethinking framework concepts.
• Meld seeks to address these needs by considering a framework job as a

• It is not a framework-less framework, but it is less framework coupling.
• Preliminary work indicates this is a productive avenue to pursue.

Summary

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202362

Thank	you	for	your	time	and	attention.

(1) graph of data products connected by
(2) user-provided operations of

(3) higher-order functions.

“Ways	change,	Stil.”		—Paul	from	Dune	by	Frank	Herbert	

Backup slides

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202363

+
-

Accessing provenance information

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202364

#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }
Tracks make_tracks(meld::handle<Hits> hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}

Class example using lambda expression

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202365

#include "meld/module.hpp"

DEFINE_MODULE(m, config)
{
auto threshold = config.get<unsigned int>("threshold");
m.with([threshold](Hits const& hits) { return hits.size() > threshold; })
.filter("GoodHits").in_each("Event")
.using_concurrency(unlimited);

}

Class example registering two member functions

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202366

#include "meld/module.hpp"

class Selector {
public:

Selector(unsigned int n) : threshold{n} {}
bool gt(Hits const& hits) const { return hits.size() > threshold; }
bool le(Hits const& hits) const { return !gt(hits); }

private:
unsigned int threshold;

};

DEFINE_MODULE(m, config)
{

auto threshold = config.get<unsigned int>("threshold");
auto bound_m = m.make<Selector>(threshold);
bound_m.with(&Selector::gt).filter("GoodHits").in_each("Event");
bound_m.with(&Selector::le).filter("GoodHits").in_each("Event");

}

Reduction example

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202367

class MyAccumulator : public art::EDProducer {
public:
MyAccumulator(ParameterSet const&)
{
produces<int, art::InSubRun>("sum");

}

void produce(art::Event&) override
{
++counter_;

}

void endSubRun(art::SubRun& sr) override
{
sr.put(std::make_unique<int>(counter_), "sum");
counter_ = 0;

}

private:
int counter_ = 0;

};

DEFINE_ART_MODULE(MyAccumulator)

void accumulate(int& counter,
meld::level_id const&)

{
++counter;

}

DEFINE_MODULE(m) {
m.with(accumulate, 0).for_each("SubRun")
.reduce("id").in_each("Event")
.to("sum");

}

Looking at the data (products)

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202368

b

𝓔𝟓 𝓔𝟔 𝓔𝟕 𝓔𝟖

𝓔𝟏 𝓔𝟐 𝓔𝟑 𝓔𝟒

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

Each element of the set is a data product, which is:

• Opaque to the framework
⟹Separation of user space from framework

• Immutable (definition of set element)
• A member of at least one set
• Identifiable

• We are interested in the mappings of the form:

• Each object 𝒂 corresponds to a tuple of arguments passed to 𝑓.
• The signature of 𝑓 and the value 𝑓 𝒂 , depends on the higher-order function.
• The above mapping happens within a domain 𝒟 (e.g. job, run, event).
• Each object 𝒂 is an element of a subset of the domain 𝒟.

Higher-order functions

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202369

𝒂 /→
0
𝒃 1 ∈ 𝒟

Supported higher-order functions

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202370

Meld term CS term Mathematical description Domain

Transform Map 𝒂 "→
#
𝒃 " where 𝑓 𝒂 → 𝒃 Same as 𝒂 "

Filter Filter 𝒂 "→
#
𝒂 $ where 𝑚 ≤ 𝑛 where 𝑓 𝒂 → Boolean Same as 𝒂 "

Monitor — 𝒂 "→
#
()% where 𝑓 𝒂 → Void Same as 𝒂 "

Reduction Fold 𝒂 "→
#𝒄 (𝒄)& where 𝑓𝒄 𝒂 → 𝒄 Above 𝒂 "

Splitter Unfold 𝒂 &→
#" 𝒅 $ where 𝑓" 𝒂 → 𝒅 " Below 𝒂 "

Zip Zip 𝑎 " , 𝑏 " → 𝑎, 𝑏 " More nested domain

