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• What DUNE has:
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Some DUNE framework requirements (paraphrased)

That sounds like a framework-less framework...😧



• How many of art’s assumptions can be relaxed/removed to meet DUNE’s needs? 

But is it so crazy?
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• How many of art’s assumptions can be relaxed/removed to meet DUNE’s needs?
• Asking this question has resulted in a 2-year project called Meld, a laboratory-

directed R&D project based at Fermilab.
• The goal is to explore options, not necessarily to provide software.
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• Meld has been heavily influenced by:
Regular discussions with DUNE experts

Existing framework capabilities and limitations 

Functional programming (e.g. Haskell)

Mathematics (set, graph, and category theory)
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Prerequisites
Support user-provided algorithms written 
in C++20 or newer

Design for concurrency

Favor community-provided software

• Meld has been heavily influenced by:
Regular discussions with DUNE experts

Existing framework capabilities and limitations 

Functional programming (e.g. Haskell)

Mathematics (set, graph, and category theory)



Looking at the data
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The following discussion describes a logical organization of data.
It does not imply a specific in-memory representation of data.



Looking at the data (set)
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Looking at the data (products)
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Looking at the data (product mappings)
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Looking at the data (product sequences)
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𝓡
Looking at the data (product sequences)
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Looking at the data (product sequences)
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Looking at the data (product sequences)
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𝓡
𝓢𝜶

𝓔𝒏

a

f

c

b

J K

W

We can make the following replacement (e.g.):

depicting the data products labeled c from 8 
events as a sequence.

= 𝑐 !



Looking at the data (product sequences)
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f

𝑎 !
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𝓡
𝓢𝜶

𝓔𝒏

𝑊 #



What type of things are we dealing with?
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• An operation that converts a sequence of elements 
𝑎 / to a sequence of elements 𝑏 / of the same 

length using a function 𝑓:
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• An operation that converts a sequence of elements 
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• An operation that converts a sequence of elements 
𝑎 / to a sequence of elements 𝑏 / of the same 

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements 
𝑐 / to a shorter sequence of elements 𝐾 0 at a 

higher level of nesting, using a function 𝑔1:
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• An operation that converts a sequence of elements 
𝑎 / to a sequence of elements 𝑏 / of the same 

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements 
𝑐 / to a shorter sequence of elements 𝐾 0 at a 

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

• An operation that pairs element of two sequences 
𝐽 0 and 𝐾 0 into one sequence 𝐽, 𝐾 0:



What type of things are we dealing with?
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• An operation that converts a sequence of elements 
𝑎 / to a sequence of elements 𝑏 / of the same 

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements 
𝑐 / to a shorter sequence of elements 𝐾 0 at a 

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

• An operation that pairs element of two sequences 
𝐽 0 and 𝐾 0 into one sequence 𝐽, 𝐾 0:

This is a zip.
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• An operation that converts a sequence of elements 
𝑎 / to a sequence of elements 𝑏 / of the same 

length using a function 𝑓:
This is a map or transform.

• An operation that converts a sequence of elements 
𝑐 / to a shorter sequence of elements 𝐾 0 at a 

higher level of nesting, using a function 𝑔1:
This is a fold or reduction.

• An operation that pairs element of two sequences 
𝐽 0 and 𝐾 0 into one sequence 𝐽, 𝐾 0:

This is a zip.
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These have to do with 
higher-order functions.



Graph of data-product sequences
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Graph of data-product sequences

5/11/23 Kyle J. Knoepfel | Meld @ CHEP 202342

The user specifications are the same with either view:

• Which data products to process
• The data set(s) that contain those products (event, etc.)
• Which higher-order function to use (transform, etc.)
• Which user-defined function to serve as the operation to 

the higher-order function.
• Allowed concurrency of each function.

The focus is just different.
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How are data products and their mappings supported now?
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With art, users do not transparently interact with data 
products.  They instead:
• Implement functions based on datasets (e.g. event)
• “Open” the dataset to retrieve and insert products

𝓡

endRun(𝓡)

endSubRun(𝓢𝜶)

produce(𝓔𝒏)
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𝓔𝒏
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With art, users do not transparently interact with data 
products.  They instead:
• Implement functions based on datasets (e.g. event)
• “Open” the dataset to retrieve and insert products

Some of this is historical and due to:
• The object-oriented nature of the framework.
• Technical limitations of C++ whenever the framework 

was designed.
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How are data products and their mappings supported now?
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With art, users do not transparently interact with data 
products.  They instead:
• Implement functions based on datasets (e.g. event)
• “Open” the dataset to retrieve and insert products

Some of this is historical and due to:
• The object-oriented nature of the framework.
• Technical limitations of C++ whenever the framework 

was designed.

𝓡

endRun(𝓡)

endSubRun(𝓢𝜶)

produce(𝓔𝒏)

𝓡
𝓢𝜶

𝓔𝒏

Results in a lot of software mechanics...



• Create tracks from hits for each event.

Example
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• Create tracks from hits for each event.

Example
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Tracks make_tracks(Hits const& hits) { ... }



• Create tracks from hits for each event.

Example
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f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

art

Tracks make_tracks(Hits const& hits) { ... }



• Create tracks from hits for each event.

Example
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f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

art#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

This is just a transform?😬

Tracks make_tracks(Hits const& hits) { ... }



• Create tracks from hits for each event.
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#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

art

Tracks make_tracks(Hits const& hits) { ... }

This is just a transform?😬



• Create tracks from hits for each event.

Example
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f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "art/Framework/Core/SharedProducer.h"
#include "art/Framework/Principal/Event.h"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

namespace expt {
class TrackMaker : public art::SharedProducer {
public:
TrackMaker(fhicl::ParameterSet const&) :
{
consumes<Hits, art::InEvent>("GoodHits");
produces<Tracks, art::InEvent>("GoodTracks");

async<art::InEvent>();
}

void produce(art::Event& e,
art::ProcessingFrame const&) override

{
auto const& hits = e.getProduct<Hits>("GoodHits");
auto tracks = make_tracks(hits);
e.put(std::make_unique<Tracks>(std::move(tracks)),

"GoodTracks");
}

};
}

DEFINE_ART_MODULE(expt::TrackMaker)

art

Tracks make_tracks(Hits const& hits) { ... }

This is just a transform?
Nobody wants this.

😬



• Create tracks from hits for each event.

Example
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f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

Meld
#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}Tracks make_tracks(Hits const& hits) { ... }

A better way…



• Create tracks from hits for each event.

Example
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f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

Meld
#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}Tracks make_tracks(Hits const& hits) { ... }

• Minimal boilerplate.
A better way…



• Create tracks from hits for each event.

Example
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f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}Tracks make_tracks(Hits const& hits) { ... }

A better way…
• Minimal boilerplate.
• Event is now a label.

Meld



• Create tracks from hits for each event.

Example
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Tracks make_tracks(Hits const& hits) { ... }

f

𝑎 !

(𝑏)!

𝓔𝒏 make_tracks

GoodHits !

(GoodTracks)!

𝓔𝒏

#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}

A better way…
• Minimal boilerplate.
• Event is now a label.
• Higher-order function is now explicit.

Meld



• https://github.com/knoepfel/meld (not even alpha release)
• Implemented using oneTBB’s flow graph

Meld implementation
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Supported construct User function

Transform (Map) 𝑓 𝒂 → 𝒃

Standard data-processing idiomsFilter 𝑓 𝒂 → Boolean

Monitor 𝑓 𝒂 → Void

Reduction (Fold) 𝑓𝒄 𝒂 → 𝒄
For splitting and then combining events

Splitter (Unfold) 𝑓" 𝒂 → 𝒅 "

Zip — For combining arguments to user functions

Sliding window — To do: For sliding over adjacent events

https://github.com/knoepfel/meld


Sample hierarchies tested by Meld
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[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ run: 1

│
└ subrun: 2

│
└ event: 10

[info] CPU efficiency: 259.55%
[info] Max. RSS: 6.205 MB

Performance numbers are preliminary

art-based hierarchy



art-based hierarchy

Sample hierarchies tested by Meld
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[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ run: 1

│
└ subrun: 2

│
└ event: 10

[info] CPU efficiency: 259.55%
[info] Max. RSS: 6.205 MB

Performance numbers are preliminary

[info] Number of worker threads: 12
[info] Processed levels:

job
│
├ trigger primitive: 10
│
└ run: 2

│
└ event: 10

[info] CPU efficiency: 230.81%
[info] Max. RSS: 6.136 MB

Non-trivial hierarchy



art-based hierarchy

Non-trivial hierarchy

Sample hierarchies tested by Meld
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[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ run: 1

│
└ subrun: 2

│
└ event: 10

[info] CPU efficiency: 259.55%
[info] Max. RSS: 6.205 MB

[info] Number of worker threads: 12
[info] Processed levels:

job
│
├ trigger primitive: 10
│
└ run: 2

│
└ event: 10

[info] CPU efficiency: 230.81%
[info] Max. RSS: 6.136 MB

[info] Number of worker threads: 12
[info] Processed levels:

job
│
└ event: 100000

[info] CPU efficiency: 882.50%
[info] Max. RSS: 16.527 MB

Flat hierarchy

Performance numbers are preliminary



• Supporting DUNE’s framework needs suggests rethinking framework concepts.

Summary
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“Ways	change,	Stil.”		—Paul	from	Dune	by	Frank	Herbert	



• Supporting DUNE’s framework needs suggests rethinking framework concepts.
• Meld seeks to address these needs by considering a framework job as a

• It is not a framework-less framework, but it is less framework coupling.
• Preliminary work indicates this is a productive avenue to pursue.

Summary
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(1) graph of data products connected by
(2) user-provided operations of 

(3) higher-order functions.

“Ways	change,	Stil.”		—Paul	from	Dune	by	Frank	Herbert	



• Supporting DUNE’s framework needs suggests rethinking framework concepts.
• Meld seeks to address these needs by considering a framework job as a

• It is not a framework-less framework, but it is less framework coupling.
• Preliminary work indicates this is a productive avenue to pursue.

Summary
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Thank	you	for	your	time	and	attention.

(1) graph of data products connected by
(2) user-provided operations of 

(3) higher-order functions.

“Ways	change,	Stil.”		—Paul	from	Dune	by	Frank	Herbert	



Backup slides
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+
-

Accessing provenance information
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#include "meld/module.hpp"

namespace {
Tracks make_tracks(Hits const& hits) { ... }
Tracks make_tracks(meld::handle<Hits> hits) { ... }

}

DEFINE_MODULE(m, config) {
m.with(make_tracks)
.transform("GoodHits").in_each("Event")
.to("GoodTracks")
.using_concurrency(unlimited);

}



Class example using lambda expression
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#include "meld/module.hpp"

DEFINE_MODULE(m, config)
{
auto threshold = config.get<unsigned int>("threshold");
m.with([threshold](Hits const& hits) { return hits.size() > threshold; })
.filter("GoodHits").in_each("Event")
.using_concurrency(unlimited);

}



Class example registering two member functions
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#include "meld/module.hpp"

class Selector {
public:

Selector(unsigned int n) : threshold{n} {}
bool gt(Hits const& hits) const { return hits.size() > threshold; }
bool le(Hits const& hits) const { return !gt(hits); }

private:
unsigned int threshold;

};

DEFINE_MODULE(m, config)
{

auto threshold = config.get<unsigned int>("threshold");
auto bound_m = m.make<Selector>(threshold);
bound_m.with(&Selector::gt).filter("GoodHits").in_each("Event");
bound_m.with(&Selector::le).filter("GoodHits").in_each("Event");

}



Reduction example
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class MyAccumulator : public art::EDProducer {
public:
MyAccumulator(ParameterSet const&)
{
produces<int, art::InSubRun>("sum");

}

void produce(art::Event&) override
{
++counter_;

}

void endSubRun(art::SubRun& sr) override
{
sr.put(std::make_unique<int>(counter_), "sum");
counter_ = 0;

}

private:
int counter_ = 0;

};

DEFINE_ART_MODULE(MyAccumulator)

void accumulate(int& counter,
meld::level_id const&)

{
++counter;

}

DEFINE_MODULE(m) {
m.with(accumulate, 0).for_each("SubRun")
.reduce("id").in_each("Event")
.to("sum");

}



Looking at the data (products)
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b

𝓔𝟓 𝓔𝟔 𝓔𝟕 𝓔𝟖

𝓔𝟏 𝓔𝟐 𝓔𝟑 𝓔𝟒

𝓢𝟏 𝓢𝟐

𝓢𝟑 𝓢𝟒

𝓡

Each element of the set is a data product, which is:

• Opaque to the framework
⟹Separation of user space from framework

• Immutable (definition of set element)
• A member of at least one set
• Identifiable



• We are interested in the mappings of the form:

• Each object 𝒂 corresponds to a tuple of arguments passed to 𝑓.
• The signature of 𝑓 and the value 𝑓 𝒂 , depends on the higher-order function.
• The above mapping happens within a domain 𝒟 (e.g. job, run, event).
• Each object 𝒂 is an element of a subset of the domain 𝒟.

Higher-order functions
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𝒂 /→
0
𝒃 1 ∈ 𝒟



Supported higher-order functions
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Meld term CS term Mathematical description Domain

Transform Map 𝒂 "→
#
𝒃 " where 𝑓 𝒂 → 𝒃 Same as 𝒂 "

Filter Filter 𝒂 "→
#
𝒂 $ where  𝑚 ≤ 𝑛 where 𝑓 𝒂 → Boolean Same as 𝒂 "

Monitor — 𝒂 "→
#
( )% where 𝑓 𝒂 → Void Same as 𝒂 "

Reduction Fold 𝒂 "→
#𝒄 (𝒄)& where 𝑓𝒄 𝒂 → 𝒄 Above 𝒂 "

Splitter Unfold 𝒂 &→
#" 𝒅 $ where 𝑓" 𝒂 → 𝒅 " Below 𝒂 "

Zip Zip 𝑎 " , 𝑏 " → 𝑎, 𝑏 " More nested domain


