GEMC

a database-driven Monte Carlo simulation program

Maurizio Ungaro

Thomas Jefferson National Accelerator Facility
Q1: No hardcoded numbers?

Can we build Geant4 application that reads parameters from a database?

name, a, b, c = “select name, dimensions from table geometry where...”

G4Box('box', 20, 30, 40)

G4Box(name, a, b, c)
Q2: Database, not code

Can we define a geant4 simulation in its entirety from a database?
Q3: Let’s be real

Can we make such DB simulation ‘realistic’?

1. Calibration / Digitization constants
2. Geometry variations
3. Emulation of Electronic Readout
4. Hardware status
5. Custom user digitization
6. Energy sharing / hits duplication

Ultimate goal: MC indistinguishable from data
Q4: Turnkey MC simulations

Can we create and run complex setups w/o programming knowledge?

1. Create DB entries, no c++ / geant4 coding
2. Intuitive, easy to use API
3. Allows user to focus on design and detector response
4. Turnkey executable provides out of the box:
 • MT handling
 • Variations
 • Pre-defined digitizations such as flux and dosimeter
 • Built-in text and ROOT output
GEMC: turnkey database-driven MC simulations program

Run options: tilts, displacements, calibration, inefficiencies

- GDML
- CAD
- SQL, TEXT

Geant4 Objects
Digitization Hits Collection
Readout, Bank Definitions

- Geant4 Transport
- Files on Disk Data Streaming

Physics Cross Sections
EM Fields
Digitization Plugins
CAD Example: edit 2 lines (JSON)

1. Grab STL files
2. Assign properties: edit json file
3. Run
4. ROOT, TEXT files with true information

"romulans": {"color": "ff99bb4", "digitization": "flux"}
Python API

<table>
<thead>
<tr>
<th>Geant4 volumes are built using the sci-g python API. An example geometry: a flux scintillator paddle collects hits from protons impinging on a liquid hydrogen target</th>
</tr>
</thead>
</table>

```python
# G4 Volume Collection

gvolume = GVolume('target')
gvolume.description = 'Liquid Hydrogen Target'
gvolume.make_tube(0, 20, 40, 0, 360)
gvolume.material = 'G4_LH2'
gvolume.color = 'ff8000'
gvolume.publish(configuration)

gvolume = GVolume('paddle')
gvolume.description = 'Scintillator paddle'
gvolume.make_box(5, 0.5, 5, 'cm')
gvolume.material = 'G4_PLASTIC_SC_VINYLTOLUENE'
gvolume.set_rotation(90, 0, 0)
gvolume.set_position(0, 2, 10, 'cm')
gvolume.color = 'f4f4ff'
gvolume.digitization = 'flux'
gvolume.set_identifier('paddleid', 5)
gvolume.publish(configuration)
```

The above snippet is the only code needed to build the geometry and record all tracks hitting the paddle.
Python API

Geant4 volumes are built using the sci-g python API. An example geometry: a flux scintillator paddle collects hits from protons impinging on a liquid hydrogen target.

The above snippet is the only code needed to build the geometry and record all tracks hitting the paddle.

```
scigTemplate.py -gv G4Box
```
Electronic Time Window

Mechanism provided by GEMC to all sensitive volumes

Track 1
Track 2
Track 3
Cell 1
Cell 2

Geant4 steps

TW

Time

Crate Snapshots
Digitization

c++ code

• external plugin - loaded on demand
• formalized access to g4step information
• formalized workflow

Hooks to:

• Define readout electronics (time window)
• Define Energy Sharing / Hit Proliferation mechanism
• Calibration / Digitization constants
• Load Translation Table
• Digitized Hit
• Define Streaming Readout
• Define output bank (ADC, TDC, FADC, SRO payload)
Energy Sharing

Digitization Hook

Cell 1

Track 2

Cell 2

True geant4 step

Generated step
GEMC Data Streamers

Concurrent Files or Streaming Readout

Event Data Collection
- true / digitized data
- indexed by event

Frame Data Collection
- collections of event data, can refer to multiple events
- Frame Header
- Payload

Formats:
- TEXT
- ROOT
- User defined (plugin)

Formats:
- VTP Binary
- User defined (plugin)
Summary

- GEMC: turnkey database-driven MC simulations program
- Full geant4 capabilities
- Realistic output
- Easy Intuitive interface

CHEP2023: consensus to support R&D for software across project or discipline boundaries

Please keep in mind this project: database driven - experiment independent

Homepage src libs