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Dark computing

DAQ & TriggerExperiments Reconstruction Analysis Publication

▶ The “analysis” step is the only one in the pipeline for which we don’t even know
who all the users are.
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We don’t do this
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So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?
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What download stats are good for (one slide)

Relative rates, such as new version adoption.

5 / 22



So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

6 / 22



So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

6 / 22



What textual analysis of CHEP/ACAT is good for (one slide)

Discovering trends and changing interests.
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Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

▶ CMSSW has been on GitHub since 2013.

▶ Many CMS physicists have to fork CMSSW at some point.

▶ Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3 697 people, 22 961 repos over 10 years.

But what about experiments other than CMS?

9 / 22



Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

▶ CMSSW has been on GitHub since 2013.

▶ Many CMS physicists have to fork CMSSW at some point.

▶ Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3 697 people, 22 961 repos over 10 years.

But what about experiments other than CMS?

9 / 22



Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

▶ CMSSW has been on GitHub since 2013.

▶ Many CMS physicists have to fork CMSSW at some point.

▶ Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3 697 people, 22 961 repos over 10 years.

But what about experiments other than CMS?

9 / 22



A complementary dataset

▶ GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

▶ https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

▶ (Could also consider a set of repos.)

▶ (We can get a list of 13 069 root-forum users, but not their GitHub userids.)

So: select GitHub users who interacted with the ROOT repo (“particle physicists”)
and look at all of their non-fork repos. 2 824 people, 17 334 repos over 6 years.

Interestingly, only 143 are in both (3.9% of CMSSW and 5.1% of ROOT).
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What they said in their profile bios
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What can we do once we have the repos?

Previously, Jim regex-searched them for “import XYZ” and “#include<XYZ>”.

For this talk, we wanted to go further and build ASTs/statically analyze all of the code.

Prior art: see Chris Ostrouchov’s Measuring API Usage (2019).
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But first, reproducing the previous studies

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).
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Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.

Uproot/Awkward usage ∼ TensorFlow usage.
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Better represented as fractions: #matching repos/#total repos
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Some of the growth was in the denominator:
the total number of repos is increasing while
Python use also increases.

In the ROOT-selected group, Python use
has always been higher, though the profile
bios indicated more engineers and computer
scientists.
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Narrow in on physicists, selecting by their profile bios
Regex (phys|analy|hep|particle|cern|cms|atlas|alice|lhc) selects 7.6% of users.
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Although selecting a pure sample of physicists
cuts more than 90% of the data, the same trends
are still visible.
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Now actually parse the repos: Python 3 adoption among physicists
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Ask specific questions: Awkward 1 adoption by function name
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def is_awkward0(obj):
return obj.function.name.startswith(

"ak.JaggedArray"
) or obj.function.name.startswith(

"ak.array.jagged.JaggedArray"
) or obj.function.name in (

"ak.IndexedArray",
"ak.Table",
"ak.fromarrow",
"ak.fromiter",
"ak.hdf5",
"ak.load",
"ak.save",
"ak.toarrow",
"ak.topandas",
"ak.util.concatenate",

)

17 / 22



Most common function calls/argument patterns

Awkward Array
2832 ak.flatten(?)
2498 ak.num(?)
2193 ak.to_numpy(?)
874 ak.sum(?, axis=1)
865 ak.flatten(?, axis=None)
564 ak.sum(?)
455 ak.ones_like(?)
406 ak.Array(?)
283 ak.concatenate(?)
265 ak.singletons(?)
248 ak.num(?, axis=1)
246 ak.concatenate(?, axis=1)
235 ak.any(?, axis=1)
234 ak.zip(?, with_name='str')
233 ak.to_pandas(?)
226 ak.unzip(?)
221 ak.firsts(?)

Uproot
2150 uproot.open(?)
889 uproot.open('str')
198 uproot.recreate(?)
179 uproot.tree.TBranchMethods.array(?)
74 uproot.lazy(?)
58 uproot.newtree(?)
57 uproot.pandas.iterate(?, 'str', ['strings'])
44 uproot.open(?, xrootdsource=?)
23 uproot.lazy(?, filter_name=?)
22 uproot.recreate('str')
18 uproot.create(?)
15 uproot.recreate(?, compression=?)
13 uproot.newbranch(?, size='str')
11 uproot.numentries(?, ?)
11 uproot.ArrayCache('str')
10 uproot.numentries(?, ?, total=False)
10 uproot.numentries(?, ?, executor=?, total=False)

Uproot relies more on object methods. We’d
have to statically analyze object types, not
functions on global modules, which is hard in
a dynamically typed language.

Compare to web traffic on awkward-array.org. . .

function #unique visitors #views avg. time
ak.Array 785 1100 3m33s
ak.concatenate 223 293 4m35s
ak.count 210 265 4m20s
ak.flatten 203 242 4m23s
ak.where 202 262 3m54s
ak.num 184 235 3m07s
ak.to numpy 181 218 3m25s
ak.mask 178 231 3m52s
ak.zip 163 221 5m02s
ak.fill none 162 214 3m11s
ak.broadcast arrays 156 210 4m20s
ak.combinations 136 171 3m58s
ak.sum 136 165 4m42s
ak.behavior 125 152 6m25s
ak.ArrayBuilder 124 161 3m02s
ak.cartesian 121 159 3m09s
ak.pad none 114 146 3m00s
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Use feature adoption to make decisions about deprecation

The colon in uproot.open("file.root:dir/tree") causes many problems:

But removing it would upset at least 10% of workflows.

The deprecation period has to be long, if it is to be
removed at all.
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Focus on Uproot’s array-fetching functions

How do people use the library="??" argument?

When it’s used, it’s much more often
used for NumPy than for Pandas.

if isinstance(tree, ast.Call):
name = ast.unparse(tree.func)
if ( # select Uproot functions only

(name.endswith(".array") and name not in (
"np.array", "np.ma.array", "numpy.array",
"NUMPY_LIB.array", "array.array",
"self.NUMPY_LIB.array", "cupy.array",

))
or name.endswith(".arrays")
or name.endswith(".iterate")
or (name.endswith(".concatenate") and name not in (

"np.concatenate", "ak.concatenate",
"awk.concatenate", "awkward.concatenate",
"awkward.JaggedArray.concatenate",
"JaggedArray.concatenate",
"tf.concatenate",

))
or name.endswith(".dask")

):
matches.append(tree)
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What libraries are Awkward and Uproot used with?

Awkward Array
numpy 90.5%
uproot 56.9%

matplotlib 49.8%
coffea 35.6%
pandas 31.2%
mplhep 20.4%
ROOT 11.9%
numba 11.8%

hist 8.8%
uproot methods 8.4%

yaml 8.2%
utils 7.4%
tqdm 6.7%

boost histogram 5.8%
tensorflow 5.0%

scipy 4.8%
vector 4.3%

torch 4.2%
seaborn 3.7%
yahist 3.6%

xgboost 3.2%
sklearn 2.9%
h5py 2.9%

memory profiler 2.6%
pympler 2.3%

psutil 2.1%
correctionlib 1.9%

sortedcontainers 1.8%
cycler 1.7%

networkx 1.7%
pylab 1.5%
PIL 1.5%

helpers 1.4%
tabulate 1.4%

Uproot
numpy 88.5%

matplotlib 59.4%
pandas 46.5%

awkward 31.7%
ROOT 23.6%
coffea 14.0%

mplhep 13.8%
tqdm 11.0%

tensorflow 9.4%
scipy 8.2%

sklearn 7.0%
uproot methods 6.2%

xgboost 6.0%
yaml 5.8%

numba 5.8%
utils 5.1%

root numpy 4.5%

seaborn 3.9%
hist 3.9%

boost histogram 3.9%
keras 3.5%

CMS lumi 3.5%
histo utilities 3.1%

analysis utilities 3.1%
torch 2.9%
h5py 2.8%

progressBar 2.8%
cebefo style 2.3%
lumi utilities 2.1%

yahist 1.9%
common 1.8%

config 1.8%
root pandas 1.8%

psutil 1.6%
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Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists


Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists


Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists


Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists


Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists


Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

