
Analysis of physics analysis

Jim Pivarski and Henry Schreiner

Princeton University – IRIS-HEP

May 9, 2023

1 / 22

Dark computing

DAQ & TriggerExperiments Reconstruction Analysis Publication

▶ The “analysis” step is the only one in the pipeline for which we don’t even know
who all the users are.

2 / 22

Dark computing

DAQ & TriggerExperiments Reconstruction Analysis Publication

These parts are centralized; developers
know how to get in touch with users

▶ The “analysis” step is the only one in the pipeline for which we don’t even know
who all the users are.

2 / 22

Dark computing

DAQ & TriggerExperiments Reconstruction Analysis Publication

These parts are centralized; developers
know how to get in touch with users

▶ The “analysis” step is the only one in the pipeline for which we don’t even know
who all the users are.

2 / 22

We don’t do this

3 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

4 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

4 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

4 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

4 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

4 / 22

What download stats are good for (one slide)

Relative rates, such as new version adoption.

5 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

6 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

6 / 22

What textual analysis of CHEP/ACAT is good for (one slide)

Discovering trends and changing interests.

1 2 3 4 5 6 7 8 9 11 13 14 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

10 10

12 12

pe
rc

en
t o

f t
al

ks
 w

ith
 m

at
ch

in
g

tit
le

/a
bs

tra
ct

(machine[-]learn|\bML\b)
(neural|\bNN\b)
deep[-]learn
(boosted[-]decision|\bBDT\b)

'85 '87 '89 '90 '91 '92 '94 '95 '97 '00 '03 '04 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

7 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

8 / 22

So what can we do instead?

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what
they think. Quantitative.

Are the people who didn’t fill it out
correlated with the questions?

Focus groups As above, but open to free-
form, generating new ideas.

Need to follow up from the small
group to a large survey.

Download stats People vote with their feet.
Quantitative.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Textual analysis of
CHEP/ACAT

Long-view historical trends. Only for those who give talks, and
what they choose to talk about.

Analysis of source
code online

Fine-grained, quantitative,
average over many users.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

8 / 22

Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

▶ CMSSW has been on GitHub since 2013.

▶ Many CMS physicists have to fork CMSSW at some point.

▶ Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3 697 people, 22 961 repos over 10 years.

But what about experiments other than CMS?

9 / 22

Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

▶ CMSSW has been on GitHub since 2013.

▶ Many CMS physicists have to fork CMSSW at some point.

▶ Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3 697 people, 22 961 repos over 10 years.

But what about experiments other than CMS?

9 / 22

Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

▶ CMSSW has been on GitHub since 2013.

▶ Many CMS physicists have to fork CMSSW at some point.

▶ Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3 697 people, 22 961 repos over 10 years.

But what about experiments other than CMS?

9 / 22

A complementary dataset

▶ GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

▶ https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

▶ (Could also consider a set of repos.)

▶ (We can get a list of 13 069 root-forum users, but not their GitHub userids.)

So: select GitHub users who interacted with the ROOT repo (“particle physicists”)
and look at all of their non-fork repos. 2 824 people, 17 334 repos over 6 years.

Interestingly, only 143 are in both (3.9% of CMSSW and 5.1% of ROOT).

10 / 22

https://www.gharchive.org/
https://github.com/root-project/root

A complementary dataset

▶ GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

▶ https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

▶ (Could also consider a set of repos.)

▶ (We can get a list of 13 069 root-forum users, but not their GitHub userids.)

So: select GitHub users who interacted with the ROOT repo (“particle physicists”)
and look at all of their non-fork repos. 2 824 people, 17 334 repos over 6 years.

Interestingly, only 143 are in both (3.9% of CMSSW and 5.1% of ROOT).

10 / 22

https://www.gharchive.org/
https://github.com/root-project/root

A complementary dataset

▶ GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

▶ https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

▶ (Could also consider a set of repos.)

▶ (We can get a list of 13 069 root-forum users, but not their GitHub userids.)

So: select GitHub users who interacted with the ROOT repo (“particle physicists”)
and look at all of their non-fork repos. 2 824 people, 17 334 repos over 6 years.

Interestingly, only 143 are in both (3.9% of CMSSW and 5.1% of ROOT).

10 / 22

https://www.gharchive.org/
https://github.com/root-project/root

What they said in their profile bios

Selected by CMSSW fork

data
code

using
stu

de
nt

physics
engineerphd

software

learning

de
ve
lop

er

unive
rsity

computer science

physicist

cern research

res
ea
rch

er

pyth
on

m

engineering

c+
+

ex
pe
rim

en
t

inter
ested

htt
ps

nucle
ar

ai

love

sys
tem

s

highenergy

ml

master

hi iit

programmer

s

atlas

msc

postdoc

web

appli
ed

stuff

proje
cts

fellow

pro
fes

sor

institute

deep

wo
rk

assis
tant

ms

also

funcurre
ntly

years

java

cms
new

``

hp
c

grad

de

lab

since

good

group
likes

major

day

lover

tools

livedr

gitlab

learn

devo
ps

particle

working scientist
experimental

machine
gra

du
ate

collaboration

postd
octor

al

analysis

mit

candidate

lhc

computin
g

associate

doctoral

na
tio
na
l

former

enth
usias

t

eth

he
p

illino
is

member

imperial

college

mathe
matics

di

qu
an
tum

heav
y

programming

zuric
h

mostly

related

intelligence

scholar

highenergy

matter

2018

collider

applications

hunter

git
hu
b

carne
gie

mellon neural

università

for
me

rly

searches

detector

de
ve
lop

me
nt sci

en
ce
s

background

architect

sta
nfo

rd

metho
ds

statistics

ind
ust

ry

cmsexperiment

dark

chicago

he
lp

get

big

large

hadron theoretical

lon
do
n

astro
phys

ics

personal

see

use

networks

project

tai
wa

nexperience

looki
ng

professional

state

school

johns

hopkins

tradi
ng

uc

purd
ue

fermilab

upgrade
knowledge

techn
iques

rep
osi

tor
ies

mo
ve
d scientific

studying

seou
l

modeling

mi
pt

centre

higgs

little

bu
gs

r

secu
rity

infn

technologyartificial

bla
23

99

20
12

2021

gene
va

sw
itz
erl
an
d

rwth

aachen

ions

mo
rni
ng

acc
ou
nt

year

think

making

ones

degree

games

heavyion

degli

studi

neutrinos

ne
utr

ino

models

junior
northeastern

mlops

turned

swiss

umd

wisconsin

rio

janeiro

hyperk

ds

w

sys
tem

need

platform

universidad

kansas

social

boston
alignment

no
tre

dame

harv
ard

apr

ma
de

puerto

rico

texas

used

within

natural

focus

studies

thi
ng
s

A lot of “physics,” “student,” “particle,”
“physicist,” “PhD,” “CERN,” and “CMS.”

Selected by ROOT interaction

time

da
ta

cloud

open

source

cod
e

one

using

student
physicsen

gin
ee
r

phd

software

learning

developer
university

computer

scien
ce

physicist

cern

research

researcher
python

m

engineering

c+
+

experiment

interested https

nucle
ar

ai

love systems

hig
h

energy

ml

cs

master

ful
l

hi
||

iit

programmer

vision

s atlas

hello

msc

wo
rld

postd
oc

web

applied

stuff

senior sta
ck

c

projects

likegoog
le

fel
low

professor

institute

de
ep

work

git

cc++

linux

math

assistant

ms

rus
t

als
o

lhcb

nlp

nt
game

fun

life

currently

gso
c

learner

years

java

cms

new

``
hpc

gra
d

3

de

lab

lead

prev

since

good

group

likes

digital major
react

ex

ruby

free

day

curious

geek

guy

team

lover

tools

im

2

live
gw

dr

strong

gitlab

bsc

go

dev

cat

swe

learn

addmasters

20

22

pe
rl

know

make

summer

irishep
enjoy

simple devops

mentor

nothing

pro
gra

m

lifelong

A little more “software,” “engineer,” but still
lots of “physics,” “student,” and “PhD.”

11 / 22

What can we do once we have the repos?

Previously, Jim regex-searched them for “import XYZ” and “#include<XYZ>”.

For this talk, we wanted to go further and build ASTs/statically analyze all of the code.

Prior art: see Chris Ostrouchov’s Measuring API Usage (2019).

12 / 22

https://labs.quansight.org/blog/2019/05/python-package-function-usage

What can we do once we have the repos?

Previously, Jim regex-searched them for “import XYZ” and “#include<XYZ>”.

For this talk, we wanted to go further and build ASTs/statically analyze all of the code.

Prior art: see Chris Ostrouchov’s Measuring API Usage (2019).

12 / 22

https://labs.quansight.org/blog/2019/05/python-package-function-usage

What can we do once we have the repos?

Previously, Jim regex-searched them for “import XYZ” and “#include<XYZ>”.

For this talk, we wanted to go further and build ASTs/statically analyze all of the code.

Prior art: see Chris Ostrouchov’s Measuring API Usage (2019).

12 / 22

https://labs.quansight.org/blog/2019/05/python-package-function-usage

But first, reproducing the previous studies

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

100

200

300

400

500

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

50

100

150

200

250

300

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.

Uproot/Awkward usage ∼ TensorFlow usage.

13 / 22

But first, reproducing the previous studies

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

100

200

300

400

500

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

50

100

150

200

250

300

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.

Uproot/Awkward usage ∼ TensorFlow usage.

13 / 22

But first, reproducing the previous studies

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

100

200

300

400

500

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

50

100

150

200

250

300

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.

Uproot/Awkward usage ∼ TensorFlow usage.

13 / 22

But first, reproducing the previous studies

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

100

200

300

400

500

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0

50

100

150

200

250

300

nu
m

be
r o

f r
ep

os
 m

at
ch

in
g,

 q
ua

rte
rly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.
Uproot/Awkward usage ∼ TensorFlow usage.

13 / 22

Better represented as fractions: #matching repos/#total repos

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Some of the growth was in the denominator:
the total number of repos is increasing while
Python use also increases.

In the ROOT-selected group, Python use
has always been higher, though the profile
bios indicated more engineers and computer
scientists.

14 / 22

Better represented as fractions: #matching repos/#total repos

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Some of the growth was in the denominator:
the total number of repos is increasing while
Python use also increases.

In the ROOT-selected group, Python use
has always been higher, though the profile
bios indicated more engineers and computer
scientists.

14 / 22

Better represented as fractions: #matching repos/#total repos

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Some of the growth was in the denominator:
the total number of repos is increasing while
Python use also increases.

In the ROOT-selected group, Python use
has always been higher, though the profile
bios indicated more engineers and computer
scientists.

14 / 22

Better represented as fractions: #matching repos/#total repos

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Some of the growth was in the denominator:
the total number of repos is increasing while
Python use also increases.

In the ROOT-selected group, Python use
has always been higher, though the profile
bios indicated more engineers and computer
scientists.

14 / 22

Narrow in on physicists, selecting by their profile bios
Regex (phys|analy|hep|particle|cern|cms|atlas|alice|lhc) selects 7.6% of users.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork and profile bios)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork and profile bios)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions and profile bios)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions and profile bios)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Although selecting a pure sample of physicists
cuts more than 90% of the data, the same trends
are still visible.

15 / 22

Narrow in on physicists, selecting by their profile bios
Regex (phys|analy|hep|particle|cern|cms|atlas|alice|lhc) selects 7.6% of users.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork and profile bios)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

CM
SS

W
 m

ov
ed

 to
 G

itH
ub

"CMS physicists" (identified by CMSSW-fork and profile bios)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions and profile bios)
C or C++
CMSSW config
Python or Jupyter
Python
Jupyter

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

fra
ct

io
n

of
 re

po
s m

at
ch

in
g,

 a
nn

ua
lly

Gi
tH

ub
 a

rc
hi

ve
 st

ar
te

d
co

lle
ct

in
g

da
ta

"particle physicists" (identified by ROOT repo interactions and profile bios)
ROOT (any)
ROOT (C++)
ROOT (Python)
NumPy
Matplotlib
Pandas
TensorFlow
Uproot
Awkward Array

Although selecting a pure sample of physicists
cuts more than 90% of the data, the same trends
are still visible.

15 / 22

Now actually parse the repos: Python 3 adoption among physicists

2012 2014 2016 2018 2020 2022
date of *.py file last modification

0.2

0.4

0.6

0.8

1.0
fra

ct
io

n
of

 *.
py

 fi
le

s
particle physicists identified by CMSSW or ROOT and profile bios

*.py files
Python 2 & 3
Python 3 only
Python 2 only
unparsable

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of *.ipynb file last modification

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 *.

ip
yn

b
fil

es

*.ipynb files
Python 2 & 3
Python 3 only
Python 2 only
unparsable
broken JSON

16 / 22

Ask specific questions: Awkward 1 adoption by function name

2019 2020 2021 2022 2023
0

20

40

60

80

100

nu
m

be
r o

f f
ile

s p
er

 m
on

th Awkward version 1 or 2
Awkward version 0

2019 2020 2021 2022 2023
date of file last modification

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 fi

le
s

Awkward version 1 or 2
Awkward version 0

def is_awkward0(obj):
return obj.function.name.startswith(

"ak.JaggedArray"
) or obj.function.name.startswith(

"ak.array.jagged.JaggedArray"
) or obj.function.name in (

"ak.IndexedArray",
"ak.Table",
"ak.fromarrow",
"ak.fromiter",
"ak.hdf5",
"ak.load",
"ak.save",
"ak.toarrow",
"ak.topandas",
"ak.util.concatenate",

)

17 / 22

Most common function calls/argument patterns

Awkward Array
2832 ak.flatten(?)
2498 ak.num(?)
2193 ak.to_numpy(?)
874 ak.sum(?, axis=1)
865 ak.flatten(?, axis=None)
564 ak.sum(?)
455 ak.ones_like(?)
406 ak.Array(?)
283 ak.concatenate(?)
265 ak.singletons(?)
248 ak.num(?, axis=1)
246 ak.concatenate(?, axis=1)
235 ak.any(?, axis=1)
234 ak.zip(?, with_name='str')
233 ak.to_pandas(?)
226 ak.unzip(?)
221 ak.firsts(?)

Uproot
2150 uproot.open(?)
889 uproot.open('str')
198 uproot.recreate(?)
179 uproot.tree.TBranchMethods.array(?)
74 uproot.lazy(?)
58 uproot.newtree(?)
57 uproot.pandas.iterate(?, 'str', ['strings'])
44 uproot.open(?, xrootdsource=?)
23 uproot.lazy(?, filter_name=?)
22 uproot.recreate('str')
18 uproot.create(?)
15 uproot.recreate(?, compression=?)
13 uproot.newbranch(?, size='str')
11 uproot.numentries(?, ?)
11 uproot.ArrayCache('str')
10 uproot.numentries(?, ?, total=False)
10 uproot.numentries(?, ?, executor=?, total=False)

Uproot relies more on object methods. We’d
have to statically analyze object types, not
functions on global modules, which is hard in
a dynamically typed language.

Compare to web traffic on awkward-array.org. . .

function #unique visitors #views avg. time
ak.Array 785 1100 3m33s
ak.concatenate 223 293 4m35s
ak.count 210 265 4m20s
ak.flatten 203 242 4m23s
ak.where 202 262 3m54s
ak.num 184 235 3m07s
ak.to numpy 181 218 3m25s
ak.mask 178 231 3m52s
ak.zip 163 221 5m02s
ak.fill none 162 214 3m11s
ak.broadcast arrays 156 210 4m20s
ak.combinations 136 171 3m58s
ak.sum 136 165 4m42s
ak.behavior 125 152 6m25s
ak.ArrayBuilder 124 161 3m02s
ak.cartesian 121 159 3m09s
ak.pad none 114 146 3m00s

18 / 22

Most common function calls/argument patterns

Awkward Array
2832 ak.flatten(?)
2498 ak.num(?)
2193 ak.to_numpy(?)
874 ak.sum(?, axis=1)
865 ak.flatten(?, axis=None)
564 ak.sum(?)
455 ak.ones_like(?)
406 ak.Array(?)
283 ak.concatenate(?)
265 ak.singletons(?)
248 ak.num(?, axis=1)
246 ak.concatenate(?, axis=1)
235 ak.any(?, axis=1)
234 ak.zip(?, with_name='str')
233 ak.to_pandas(?)
226 ak.unzip(?)
221 ak.firsts(?)

Uproot
2150 uproot.open(?)
889 uproot.open('str')
198 uproot.recreate(?)
179 uproot.tree.TBranchMethods.array(?)
74 uproot.lazy(?)
58 uproot.newtree(?)
57 uproot.pandas.iterate(?, 'str', ['strings'])
44 uproot.open(?, xrootdsource=?)
23 uproot.lazy(?, filter_name=?)
22 uproot.recreate('str')
18 uproot.create(?)
15 uproot.recreate(?, compression=?)
13 uproot.newbranch(?, size='str')
11 uproot.numentries(?, ?)
11 uproot.ArrayCache('str')
10 uproot.numentries(?, ?, total=False)
10 uproot.numentries(?, ?, executor=?, total=False)

Uproot relies more on object methods. We’d
have to statically analyze object types, not
functions on global modules, which is hard in
a dynamically typed language.

Compare to web traffic on awkward-array.org. . .

function #unique visitors #views avg. time
ak.Array 785 1100 3m33s
ak.concatenate 223 293 4m35s
ak.count 210 265 4m20s
ak.flatten 203 242 4m23s
ak.where 202 262 3m54s
ak.num 184 235 3m07s
ak.to numpy 181 218 3m25s
ak.mask 178 231 3m52s
ak.zip 163 221 5m02s
ak.fill none 162 214 3m11s
ak.broadcast arrays 156 210 4m20s
ak.combinations 136 171 3m58s
ak.sum 136 165 4m42s
ak.behavior 125 152 6m25s
ak.ArrayBuilder 124 161 3m02s
ak.cartesian 121 159 3m09s
ak.pad none 114 146 3m00s

18 / 22

Most common function calls/argument patterns

Awkward Array
2832 ak.flatten(?)
2498 ak.num(?)
2193 ak.to_numpy(?)
874 ak.sum(?, axis=1)
865 ak.flatten(?, axis=None)
564 ak.sum(?)
455 ak.ones_like(?)
406 ak.Array(?)
283 ak.concatenate(?)
265 ak.singletons(?)
248 ak.num(?, axis=1)
246 ak.concatenate(?, axis=1)
235 ak.any(?, axis=1)
234 ak.zip(?, with_name='str')
233 ak.to_pandas(?)
226 ak.unzip(?)
221 ak.firsts(?)

Uproot
2150 uproot.open(?)
889 uproot.open('str')
198 uproot.recreate(?)
179 uproot.tree.TBranchMethods.array(?)
74 uproot.lazy(?)
58 uproot.newtree(?)
57 uproot.pandas.iterate(?, 'str', ['strings'])
44 uproot.open(?, xrootdsource=?)
23 uproot.lazy(?, filter_name=?)
22 uproot.recreate('str')
18 uproot.create(?)
15 uproot.recreate(?, compression=?)
13 uproot.newbranch(?, size='str')
11 uproot.numentries(?, ?)
11 uproot.ArrayCache('str')
10 uproot.numentries(?, ?, total=False)
10 uproot.numentries(?, ?, executor=?, total=False)

Uproot relies more on object methods. We’d
have to statically analyze object types, not
functions on global modules, which is hard in
a dynamically typed language.

Compare to web traffic on awkward-array.org. . .

function #unique visitors #views avg. time
ak.Array 785 1100 3m33s
ak.concatenate 223 293 4m35s
ak.count 210 265 4m20s
ak.flatten 203 242 4m23s
ak.where 202 262 3m54s
ak.num 184 235 3m07s
ak.to numpy 181 218 3m25s
ak.mask 178 231 3m52s
ak.zip 163 221 5m02s
ak.fill none 162 214 3m11s
ak.broadcast arrays 156 210 4m20s
ak.combinations 136 171 3m58s
ak.sum 136 165 4m42s
ak.behavior 125 152 6m25s
ak.ArrayBuilder 124 161 3m02s
ak.cartesian 121 159 3m09s
ak.pad none 114 146 3m00s

18 / 22

Use feature adoption to make decisions about deprecation

The colon in uproot.open("file.root:dir/tree") causes many problems:

But removing it would upset at least 10% of workflows.

The deprecation period has to be long, if it is to be
removed at all.

19 / 22

Use feature adoption to make decisions about deprecation

The colon in uproot.open("file.root:dir/tree") causes many problems:

But removing it would upset at least 10% of workflows.

The deprecation period has to be long, if it is to be
removed at all.

19 / 22

Focus on Uproot’s array-fetching functions

How do people use the library="??" argument?

When it’s used, it’s much more often
used for NumPy than for Pandas.

if isinstance(tree, ast.Call):
name = ast.unparse(tree.func)
if (# select Uproot functions only

(name.endswith(".array") and name not in (
"np.array", "np.ma.array", "numpy.array",
"NUMPY_LIB.array", "array.array",
"self.NUMPY_LIB.array", "cupy.array",

))
or name.endswith(".arrays")
or name.endswith(".iterate")
or (name.endswith(".concatenate") and name not in (

"np.concatenate", "ak.concatenate",
"awk.concatenate", "awkward.concatenate",
"awkward.JaggedArray.concatenate",
"JaggedArray.concatenate",
"tf.concatenate",

))
or name.endswith(".dask")

):
matches.append(tree)

20 / 22

What libraries are Awkward and Uproot used with?

Awkward Array
numpy 90.5%
uproot 56.9%

matplotlib 49.8%
coffea 35.6%
pandas 31.2%
mplhep 20.4%
ROOT 11.9%
numba 11.8%

hist 8.8%
uproot methods 8.4%

yaml 8.2%
utils 7.4%
tqdm 6.7%

boost histogram 5.8%
tensorflow 5.0%

scipy 4.8%
vector 4.3%

torch 4.2%
seaborn 3.7%
yahist 3.6%

xgboost 3.2%
sklearn 2.9%
h5py 2.9%

memory profiler 2.6%
pympler 2.3%

psutil 2.1%
correctionlib 1.9%

sortedcontainers 1.8%
cycler 1.7%

networkx 1.7%
pylab 1.5%
PIL 1.5%

helpers 1.4%
tabulate 1.4%

Uproot
numpy 88.5%

matplotlib 59.4%
pandas 46.5%

awkward 31.7%
ROOT 23.6%
coffea 14.0%

mplhep 13.8%
tqdm 11.0%

tensorflow 9.4%
scipy 8.2%

sklearn 7.0%
uproot methods 6.2%

xgboost 6.0%
yaml 5.8%

numba 5.8%
utils 5.1%

root numpy 4.5%

seaborn 3.9%
hist 3.9%

boost histogram 3.9%
keras 3.5%

CMS lumi 3.5%
histo utilities 3.1%

analysis utilities 3.1%
torch 2.9%
h5py 2.8%

progressBar 2.8%
cebefo style 2.3%
lumi utilities 2.1%

yahist 1.9%
common 1.8%

config 1.8%
root pandas 1.8%

psutil 1.6%
21 / 22

Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

▶ A lot of physics analysis code is public on GitHub and GitLab.

▶ We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

▶ Studying tens of thousands of git repos is a modest data analysis (TB scale).
▶ Dask was very helpful!

▶ We can learn things that are useful for software library maintenance:
▶ user adoption of new versions

▶ most common function-call patterns

▶ decide if and when a feature can be deprecated

▶ discover which libraries are being used together, maybe motivate integrations

▶ It’s hard to identify class method calls in a dynamically typed language!

How to get the analysis code (source data are in public S3 buckets):
https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

22 / 22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

