= PRINCETON (g iris
UNIVERSITY hep

Analysis of physics analysis

Jim Pivarski and Henry Schreiner

Princeton University — IRIS-HEP

May 9, 2023

1/22

Dark computing &

-G,

Experiments DAQ & Trigger Reconstruction Analysis Publication

2/22

Dark computing

e mmm T These parts are centralized; developers R
know how to get in touch with users ~________--- = Teell

/ o LM 1 Y

’] . ¥ 4 4 \
1 Y = 1
4 ' - J 1
I .gm . 1 . 1 5 | p
3 IIIi ! =]
i ! HE ! !
N DAQ & Trigger Reconstruction | Analysis b, Publication 4

2/22

Dark computing

e mmm T =77 These parts are centralized; developers Tl
s know how to get in touch with users ~________--- -~ Tl

,/ oAV \\

N \

1 = 1
1 8 1
i mul .] 3 X .
: N - '
1) o

N DAQ & Trigger Reconstruction | Analysis b\ Publication 4

> The “analysis” step is the only one in the pipeline for which we don’t even know
who all the users are.

2/22

We don't do this

< Back Analytics & Improvements

Share iPhone & Watch Analytics O

Analytics Data

Help Apple improve its products and services by
automatically sending daily diagnostic and usage
data. Data may include location information
Analytics uses wireless data. About Analytics &
Privacy...

3/22

So what can we do instead?

Method Good Bad

4/22

So what can we do instead? b

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

4/22

So what can we do instead? s

Method Good Bad

Bug-reports Resolve immediate needs. Only hear from proactive people.

Surveys Can directly ask people what Are the people who didn't fill it out
they think. Quantitative. correlated with the questions?

4/22

So what can we do instead?

Method

Good

Bad

Bug-reports

Surveys

Focus groups

Resolve immediate needs.

Can directly ask people what
they think. Quantitative.

As above, but open to free-
form, generating new ideas.

Only hear from proactive people.

Are the people who didn't fill it out
correlated with the questions?

Need to follow up from the small
group to a large survey.

4/22

So what can we do instead?

Method

Good

Bad

Bug-reports

Surveys

Focus groups

Download stats

Resolve immediate needs.

Can directly ask people what
they think. Quantitative.

As above, but open to free-
form, generating new ideas.

People vote with their feet.
Quantitative.

Only hear from proactive people.

Are the people who didn't fill it out
correlated with the questions?

Need to follow up from the small
group to a large survey.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

4/22

What download stats are good for (one slide)

Relative rates, such as new version adoption.

Number of pip-installs per month

104

----- Awkward (all versions)
—— Awkward 0.x
—— Awkward 1.x
—— Awkward 2.x

103 4

102 4

101 4

MacOS and Windows (i.e. no batch jobs)

.releasedate 4 0.

....r¢.|.6.¢§¢.€‘.a.t¢.....%........... K]

2018 2019

2020

2021

2022

2023

5/22

So what can we do instead?

Method

Good

Bad

Bug-reports

Surveys

Focus groups

Download stats

Resolve immediate needs.

Can directly ask people what
they think. Quantitative.

As above, but open to free-
form, generating new ideas.

People vote with their feet.
Quantitative.

Only hear from proactive people.

Are the people who didn’t fill it out
correlated with the questions?

Need to follow up from the small
group to a large survey.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

6/22

So what can we do instead?

Method

Good

Bad

Bug-reports

Surveys

Focus groups

Download stats

Resolve immediate needs.

Can directly ask people what
they think. Quantitative.

As above, but open to free-
form, generating new ideas.

People vote with their feet.
Quantitative.

Textual analysis of Long-view historical trends.

CHEP/ACAT

Only hear from proactive people.

Are the people who didn’t fill it out
correlated with the questions?

Need to follow up from the small
group to a large survey.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Only for those who give talks, and
what they choose to talk about.

6/22

What textual analysis of CHEP/ACAT is good for (one slide)

Discovering trends and changing interests.

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '00 '03 '04 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
129 —— (machinel- Jlearn|\bML\b) 12
I —== (neural|\bNN\b)
g ----- deep[- Jlearn
8 101 —.- (boosted]- Idecision|\bBDT\b) 10
)
=
=
2 81 8
£
S
© ,——"‘
E 6 K \ 6
= N / \
= l" / \
L 1\ ’ \
T 41 [/ \ 4
3 1 /
— \ /7 \
15} ! \ 7 \
o ! \ /7 \
b5 ! v \
o 2 1 \ 2
[1 \
o ', ‘e
~
0 ." ———— \\.‘“ — ey
1 2 3 4 5 6 7 8 9 11 13 14 16 17 18 19 20 21 22 23 24 25

CHEP number
7/22

So what can we do instead?

Method

Good

Bad

Bug-reports

Surveys
Focus groups
Download stats

Textual analysis of
CHEP/ACAT

Resolve immediate needs.

Can directly ask people what
they think. Quantitative.

As above, but open to free-
form, generating new ideas.

People vote with their feet.
Quantitative.

Long-view historical trends.

Only hear from proactive people.

Are the people who didn't fill it out
correlated with the questions?

Need to follow up from the small
group to a large survey.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Only for those who give talks, and
what they choose to talk about.

8/22

So what can we do instead?

Method

Good

Bad

Bug-reports

Surveys

Focus groups
Download stats
Textual analysis of

CHEP/ACAT

Analysis of source
code online

Resolve immediate needs.

Can directly ask people what
they think. Quantitative.

As above, but open to free-
form, generating new ideas.

People vote with their feet.
Quantitative.

Long-view historical trends.

Fine-grained, quantitative,
average over many users.

Only hear from proactive people.

Are the people who didn't fill it out
correlated with the questions?

Need to follow up from the small
group to a large survey.

Coarse-grained: only know package-
level info. Skewed by batch jobs.

Only for those who give talks, and
what they choose to talk about.

Only public repos, have to identify
demographics with some seed: how
to define “particle physicists”?

8/22

Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

» CMSSW has been on GitHub since 2013.
» Many CMS physicists have to fork CMSSW at some point.
» Very few non-physicists would fork CMSSW.

9/22

Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

» CMSSW has been on GitHub since 2013.
» Many CMS physicists have to fork CMSSW at some point.
» Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3697 people, 22961 repos over 10 years.

9/22

Analysis of source code online (the rest of this talk)

A few years ago (2019), Jim stumbled upon a good technique:

» CMSSW has been on GitHub since 2013.
» Many CMS physicists have to fork CMSSW at some point.
» Very few non-physicists would fork CMSSW.

So the technique is: select GitHub users who forked CMSSW (“CMS physicists”) and
look at all of their non-fork repos. 3697 people, 22961 repos over 10 years.

But what about experiments other than CMS?

9/22

A complementary dataset ka

» GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

> https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

» (Could also consider a set of repos.)

» (We can get a list of 13069 root-forum users, but not their GitHub userids.)

10/22

https://www.gharchive.org/
https://github.com/root-project/root

A complementary dataset &

» GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

> https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

» (Could also consider a set of repos.)

» (We can get a list of 13069 root-forum users, but not their GitHub userids.)

So: select GitHub users who interacted with the ROOT repo (“particle physicists”)
and look at all of their non-fork repos. 2824 people, 17 334 repos over 6 years.

10/22

https://www.gharchive.org/
https://github.com/root-project/root

A complementary dataset &

» GitHub Archive (https://www.gharchive.org/) has been collecting all fork,
PR, issue, wiki, watch, and comment events since 2017. We can get a list of
GitHub users who have had any interaction at all with a specified repo.

> https://github.com/root-project/root seems like a logical choice to
define “particle physicists.”

» (Could also consider a set of repos.)

» (We can get a list of 13069 root-forum users, but not their GitHub userids.)

So: select GitHub users who interacted with the ROOT repo (“particle physicists”)
and look at all of their non-fork repos. 2824 people, 17 334 repos over 6 years.

Interestingly, only 143 are in both (3.9% of CMSSW and 5.1% of ROOT).

10/22

https://www.gharchive.org/
https://github.com/root-project/root

What they said in their profile bios

Selected by CMSSW fork

ws iq/,, kn
a e
amphratmns "”\ © \’ ameg

collaborat|on e(\

personal 9 ST
Coy, %9,
e %77@,‘
purdue <
9, Ca 0
Oe/y 6/7 Oine,

’O’ e’/n
s, G{e

architect

& m@wﬂem\v

A\ K’ <
& SR (¢ (\ \yo(\‘\)
Q O ”

<

deep-) s C engineer a"r“"gd

D mpY \\

/7 ar t/ S oo
250 erg Qﬂ, <o “‘“°\5 :

1 Nit 2 6. dame

soms;gy" e phySICIStm
3< urc? related = 53"

inteyy M"m -~ W(e e\% . b Schooy (\\D& fon,,
em(,,f;/,f’iencp"(,,,,,,W o o Yo el o0t backgr S “admﬂ) i - g

A lot of “physics,” “student,” “particle,”

“physicist,” “PhD,” “"CERN,"” and “CMS.”

i

Selected by ROOT interaction

er\'xg\gglaéecrs o9 (7 f@ digital ttpsa’ge/or
S 2 Q\’ @V MSC 0 \ad oy, @(9 apphed
« @O@r) /,//}7 @/ u,?/ ‘71 /@C[S /)@
\rnatlh ng 3 @/hg D "o, e /
SIO C @ *
prev er ms tImE/,QG
geeA\) & n e m 3 200
//;f‘@S . (\e //7([) /7@14/)tst) 4
QsoC Woc free g 'a b v (]ke
< 5 OO(/
mocetnstudent o
stJ e Ove W d t
o J 0,5Y8 ems
& resg h S
go09'® like Sea,- A p yS'C'St
/eamenglneerlngsen, programmer
summer devops Meman%swstamt currently

A little more “software,” “engineer,” but still
lots of “physics,” “student,” and “PhD.”

11/22

What can we do once we have the repos? \

Previously, Jim regex-searched them for “import XYZ" and “#include<XyZz>".

12/22

https://labs.quansight.org/blog/2019/05/python-package-function-usage

What can we do once we have the repos? \

Previously, Jim regex-searched them for “import XYZ" and “#include<XyZz>".

For this talk, we wanted to go further and build ASTs/statically analyze all of the code.

12/22

https://labs.quansight.org/blog/2019/05/python-package-function-usage

What can we do once we have the repos? \

Previously, Jim regex-searched them for “import XYZ" and “#include<XyZz>".
For this talk, we wanted to go further and build ASTs/statically analyze all of the code.

Prior art: see Chris Ostrouchov's Measuring API Usage (2019).

) Quansight-Labs/python-api-inspect

fory ending with ipynb and .y with python

2. Parst an
ast alte database (7 GB as of now)

J QUANSIGHT

Day 2 Lightning Talks | SciPy 2019 |

12/22

https://labs.quansight.org/blog/2019/05/python-package-function-usage

But first, reproducing the previous studies

number of repos matching, quarterly

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

o
S
S

"CMS physicists" (identified by CMSSW-fork)

»
S
S

w
S
S

N
S
S

,_.
o
S

Jupyter
'

—— CorC++
CMSSW config
Python or Jupyter
—— Python

0
2012

2013

2014

2616 Zdl7 ZdlB 2619 ZdZO

date of most recent file in repo

2015

2021

2022

20

number of repos matching, quarterly

N
&
S

~
o
S

150

H
o
S

w
S

"CMS physicists" (identified by CMSSW-fork)

ROOT (any)
ROOT (C++)

-=- ROOT (Python)

NumPy
Matplotlib

-- Pandas

TensorFlow
Uproot

- Awkward Array
] v

0
2012 2

013 2014

2016 2017 2018 2019 2021 2022

date of most recent file in repo

2015

2023

13/22

But first, reproducing the previous studies

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

500 "CMS physicists” (identified by CMSSW-fork) 300 "CMS physicists” (identified by CMSSW-fork)
—— CorC++ e ROOQT (any)
----- CMSSW config : —— ROOT (C++)
200 Python or Jupyter 2501 __. ROOT (Python)
—— Python —— NumPy
-~ Jupyter 200 === Matplotlib
300 o —-- Pandas
----- TensorFlow 1/
150 Uproot

N
S
S

- Awkward Array
] v

H
o
S

,_.
o
S

number of repos matching, quarterly
number of repos matching, quarterly

w
S

0 + v T v v v v v u o u T T u v v u
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 20 2012 2013 2014 2015 2018 2019 2021 2022 2023
date of most recent file in repo date of most recent file in repo

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)

increase.
13/22

But first, reproducing the previous studies

number of repos matching, quarterly

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

"CMS physicists" (identified by CMSSW-fork)

o
S
S

—— CorC++
----- CMSSW config
Python or Jupyter
—— Python
Jupyter
T

»
S
S

w
S
S

N
S
S

,_.
o
S

0 ~+ . —
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 20
date of most recent file in repo

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

"CMS physicists" (identified by CMSSW-fork)

w
S
S

----- ROOT (any)

—— ROOT (C++)
2509 __. ROOT (Python)
— NumPpy
2004 -=- Matplotiib

—-- Pandas

----- TensorFlow

—— Uproot

- Awkward Array
A

H
o
S

number of repos matching, quarterly
" G
g g

2616 2017 2018 Zdlg 2620 20‘21 20‘22 2023

date of most recent file in repo

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.

0 T T T
2012 2013 2014 2015

13/22

But first, reproducing the previous studies

number of repos matching, quarterly

Note that the data have changed: more GitHub users have forked CMSSW since the
last time we looked, which adds even their past history to the plot, and the date of a
repo is set by the latest file, which causes them to migrate bins (forward in time).

"CMS physicists" (identified by CMSSW-fork)

o
S
S

—— CorC++
----- CMSSW config
Python or Jupyter
—— Python
Jupyter
T

»
S
S

w
S
S

N
S
S

,_.
o
S

r L rNeemT

0 1 T T 7 T T T T T T
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 20
date of most recent file in repo

Conclusion is the same: C++ and CMSSW
config (Python with import FWCore) are
flat, while Python and Jupyter (Python)
increase.

"CMS physicists" (identified by CMSSW-fork)

w
S
S

----- ROOT (any)

—— ROOT (C++)
2509 __. ROOT (Python)
— NumPpy
2004 -=- Matplotiib

—-- Pandas

----- TensorFlow

—— Uproot

- Awkward Array
A

H
o
S

number of repos matching, quarterly
" G
g g

2616 2017 2018 Zdlg 2620 20‘21 20‘22 2023

date of most recent file in repo

Conclusion is the same: ROOT-C++ usage is
flat while PyROOT and especially NumPy,
Matplotlib, Pandas, TensorFlow are increasing.
Uproot/Awkward usage ~ TensorFlow usage.

0 T T T
2012 2013 2014 2015

13/22

Better represented as fractions:

0 "CMS physicists" (identified by CMSSW-fork) 06 "CMS physicists" (identified by CMSSW-fork)
L — CorC++ ROOT (any)
0.6 CMSSW config —— ROOT (C++) ..
Python or Jupyter 057/ ROOT (Python)
0.5 — Python S —— NumPy
0.4 4 —=- Matplotlib
—:= Pandas
0.4 4ceeee,, TensorFlow
~—— Uproot

o
w

—=- Awkward Array

o

N
o
N
e

)

b
o
b

fraction of repos matching, annually
fraction of repos matching, annually
IS
W

- - Fmme Q==
KL

0.0 0.0 . =
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo date of most recent file in repo

14/22

fraction of repos matching, annually

fraction of repos matching, annually

Better represented as fractions:

"CMS physicists" (identified by CMSSW-fork)

o
S

f—— CorC++

CMSSW config

Python or Jupyter

—— Python

~=- Jupyter
T

4
o

=4
o

ol

o
IS

o
w

o
N

o
b

0
2012 2013 2014 2015 2016 2017 2018 2019 2020
date of most recent file in reno

2021

202

2

2023

0.5
—— CorC++
----- CMSSW config
0.44 Python or Jupyter
~—— Python
f -~ Jupyter

o
w

o
N

o
i

"particle physicists" (identified by ROOT repo interactions)
T

{
2014 2015 2016 2017 2018 2019 2020
date of most recent file in repo

0.0 T
2012 2013

2021

202,

2

2023

fraction of repos matching, annually

"CMS physicists" (identified by CMSSW-fork)

0.6

o
o

S —— NumPy

o
IS
1
i
'

—-- Pandas

~—— Uproot

o
N}

o
b

fraction of repos matching, annually
IS
W

ROOT (any)
—— ROOT (C++) ..
=== ROOT (Python)

Matplotlib

TensorFlow

—=- Awkward Array

Fome Q=
R

l)gmz 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in rebo
0.200 "particle physicists" (identified by ROOT repo interactions)
ROOT (any)
0.175 { —— ROOT (C++)
-~ ROOT (Python)
0.150 { —— NumPy
-~ Matplotlib
01251 —.- Pandas
TensorFlow
01001 yproot
-~ Awkward Array
0.075 4=
0.050 Ny
0.025 /;:____ -
%l
0.000 T e N T =t
2012 2013 2014 2015 2016

I
2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo 14 /22

Better represented as fractions:

~=- Jupyter
T

0 "CMS physicists" (identified by CMSSW-fork) 06 "CMS physicists" (identified by CMSSW-fork)
Cl— Corcer B s ROOT (any)
06 CMSSW config - 2 —— ROOT (C++) ..
Python or Jupyter R 305 - ROOT (Python) .
0.5] — Python e <) —— Nump
Some of the growth was in the denominator:

o
'S

the total number of repos is increasing while
Python use also increases.

o
w

o
N

o
b

fraction of repos matching, annually

0.0 + === 0.0 .
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

date of most recent file in reno date of most recent file in reno

"particle physicists" (identified by ROOT repo interactions) "particle physicists" (identified by ROOT repo interactions)
T T

05 0.200

 CorCt+ B ROOT (any) o
----- CMSSW config k! 20,175 — ROOT (C++) k]
0.4 Python or Jupyter - ROOT (Python) o
—— Python = 0.150 { — NumPy =1
F === Jupyter -== Matplotlib o]
3

0.3 :

01251 —.- Pandas

--==- TensorFlow
~——— Uproot
~—- Awkward Array

0.100

o
N

0.075 4=

0.050 LS

o
i

fraction of repos matching, annually
fraction of repos matching, annuall

0.025 ¢

= - 0.000 r == s u r . -
2016 2019 2021 2022 2023 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo date of most recent file in repo 14 /22

0.0
2012 2013 2014 2015

fraction of repos matching, annually

fraction of repos matching, annually

"CMS physicists" (identified by CMSSW-fork)

"CMS physicists" (identified by CMSSW-fork)

2023

0.7 I 0.6 T
— CorC++ e ROOT (any)
| -+ cMSSW config E —— ROOT (C++) ..
0.6 T 05
Python or Jupyter T 2 === ROOT (Python))

0.5 — Python st s —— NumPy

| ==~ Jupyter H H B

; Some of the growth was in the denominator: | ...
04 tnnipr——— T TN T e
ol the total number of repos is increasing while
. Python use also increases.
B)
01l 2 e g 0.1
e B v et
0.0 B .0 =
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
date of most recent file in reno date of most recent file in reno
05 "particle physicists" (identified by ROOT repo interactions) 0,200 "particle physicists" (identified by ROOT repo interactions)
Tl — Corce+ ni ----- ROOT (any) mi
----- CMSSW config ke 201751 —— ROOT (C++) k!
0.4 Python or Jupyter ::1: - ‘
| pn g In the ROOT-selected group, Python use

o
w

o
N

o
i

has always been higher, though the profile |z~
bios indicated more engineers and computer [~

& scientists.

0.0
20

{
2016 2017 2018 2019 2020

date of most recent file in repo

12 2013 2014 2015 2021

2022

2023

T
£ 0.025

0.000
2012

a8

- I
2016 2017 2018 2019 2020

date of most recent file in repo

2013 2014 2015 2021

2022
14

2023
/22

Narrow in on physicists, selecting by their profile bios

Regex (phys|analy|hep|particle|cern|cms|atlas|alice]lhc) selects 7.6% of users.

07 "CMS physicists" (identified by CMSSW-fork and profile bios) 06 "CMS physicists" (identified by CMSSW-fork and profile bios)
—— CorC++ -++=- ROOT (any)
-+ CMSSW config —— ROOT (C++)
Python or Jupyter 0.5 ROOT (Python)
0.5 — Python —— NumPy
-~ Jupyter 0.4 === Matplotlib

Pandas
TensorFlow
—— Uproot

~-- Awkward Array

o
N

fraction of repos matching, annually
o °
2 ©

fraction of repos matching, annually

0.0 t T T T T T T T T T 0.0 T T T T T T T
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
"particle physicists" (identified by ROOT repo interactions and profile bios) "particle physicists" (identified by ROOT repo interactions and profile bios)
0.5 T i 0.30 .
—— CorC++ o ===+ ROOT (any) !
:: ----- CMSSW config :: —— ROOT (C++)
204 Python or Jupyter 2 0251 —~- ROOT (Python)
5 —— Python < —— NumPy
S -~ Jupyter 020 Matplotlib
£ 03 £ Pandas
® ® TensorFlow
E E 0159 —— Uproot
2 0.2 -4 ~~- Awkward Array
& o : S
- « 0.10 4
5 S - 5
5 5
5 0.14 B
s s g 005
0.0 ~ — : - — 0.00 —
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

date of most recent file in repo date of most recent file in repo

15/22

Narrow in on physicists, selecting by their profile bios

Regex (phys|analy|hep|particle|cern|cms|atlas|alice]lhc) selects 7.6% of users.

fraction of repos matching, annually

fraction of repos matching, annually

"CMS physicists" (identified by CMSSW-fork and profile bios)

0.7 x
—— CorC++
----- CMSSW config

0.6
Python or Jupyter
051 — Python
-~ Jupyter

o
N
1OV

o
s
<)

Faction of repos matching, annually
°
©

"CMS physicists" (identified by CMSSW-fork and profile bios)

----- ROOT (any)
—— ROOT (C++)
~=- ROOT (Python)
—— NumPy §
0.44 - Matplotiib
Pandas

« TensorFlow
—— Uproot

~-- Awkward Array

%

o
°

12 2013 2014 2015 2016 2017

~
3

"particle physicists" (identified by ROO
T

Although selecting a pure sample
cuts more than 90% of the data, the same trends

of physicists

2017 2018 2019 2020 2021 2022

20:

by ROOT repo interactions and profile bios)
T

05 : . ..
—Corcar i are still visible.
----- CMSSW config] =
0.4 Python or Jupyter j :
—— Python 7
~-- Jupyter -
03 9
2
2
0.2 o

o
s

0.0
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
date of most recent file in repo

fraction of repos matching, annuall

0251 ___ ROOT (Python)
— NumPy
020 ==~ Matplotiib
- Pandas
~ee-. TensorFlow
0159 Yproot

-~ Awkward Array
P S

0.00 =
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

date of most recent file in repo

20:

23

23

15/22

fraction of *.py files

e

fraction of *.ipynb files

o

o

1.

0.

0.

0.

0.

(]

particle physicists identified by CMSSW or ROOT and profile bios

0
*.py files
s Python 2 & 3
I Python 3 only
Python 2 only
61 B unparsable
4
24
A _—
2012 2014 2016 2018 2020 2022
o date of *.py file last modification
*.ipynb files
8 Python 2 & 3
B Python 3 only
Python 2 only
61 B unparsable
BN broken JSON
4
24
.0 T T
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

date of *.ipynb file last modification

16 /22

Ask specific questions: Awkward 1 adoption by function name ' \

£ 100 ™ Awkward version 1 or 2 def is—aWkwarCliO (ob3j) .

é Awkward version 0 return obj.function.name.startswith (
5 "ak.JaggedArray"

?,) or obj.function.name.startswith (

< "ak.array.jagged.JaggedArray"

E) or obj.function.name in (

E "ak.IndexedArray",

= "ak.Table",

2019 2020 "ak.fromarrow",
1.0

E Avkward Tors "ak.fromiter",
wkward version 1 or " "
0.8 Awkward version 0 ak.hdf5",
"ak.load",
0.6 1 "ak.save",
0.4 "ak.toarrow",
’ "ak.topandas",
0.2 "ak.util.concatenate",
)
0.0 -

2019 2020 2021 2022 2023
date of file last modification

fraction of files

17/22

Most common function calls/argument patterns

2832
2498
2193
874
865
564
455
406
283
265
248
246
235
234
233
226
221

Awkward Array

ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.

flatten(?)

num (?)
to_numpy (?)
sum(?, axis=1)
flatten(?,
sum (?)
ones_1like (?)
Array (?)
concatenate (?)
singletons (?)
num(?, axis=1)
concatenate (?,
any (?, axis=1)
zip (?, with_name='str')
to_pandas (?)

unzip (?)

firsts (?)

axis=None)

axis=1)

2150
889
198
179

74
58
57
44
23
22
18
15
13
11
11
10
10

Uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot
uproot

.open(?)
.open('str')
.recreate (?)
.tree.TBranchMethods.array (?)
.lazy (?)
.newtree (?)
.pandas.iterate (?,
.open(?,
.lazy (?,
.recreate('str"')
.create(?)
.recreate(?,
.newbranch (?,
.numentries (?, ?)
.ArrayCache ('
.numentries (?, ?,
.numentries (?

'str', ['stri
xrootdsource="?)

filter name=?)

compression=?)
size='str')

str')
total=False)

?, 7, executor=?, to
18/22

Most common function calls/argument patterns

Awkward Array Uproot
2832 ak.flatten(?) 2150 wuproot.open(?)
2498 ak.num(?) 889 wuproot.open('str'")
2193 ak.to_numpy (?) 198 wuproot.recreate (?)
874 ak.sum(?, axis=1) 179 uproot.tree.TBranchMethods.array (?)
865 ak.flatten(?, axis=None) 74 uproot.lazy(?)
564 ak.sum(?)) 58 uj Uproot relies more on object methods. We'd)
455 ak.ones_like (?) 57y have to statically analyze object types, not ptri
406 ak.Array(?) 44) functions on global modules, which is hard in
283 ak.concatenate (?) 23 uj a dynamically typed language.
265 ak.singletons (?) 22 Uprvvcrrooicaco oo
248 ak.num(?, axis=1l) 18 wuproot.create (?)
246 ak.concatenate(?, axis=1l) 15 wuproot.recreate(?, compression=7?)
235 ak.any(?, axis=1) 13 uproot.newbranch(?, size='str')
234 ak.zip(?, with_name='str') 11 uproot.numentries(?, ?)
233 ak.to_pandas (?) 11 uproot.ArrayCache ('str')
226 ak.unzip(?) 10 uproot.numentries(?, ?, total=False)
221 ak.firsts (?) 10 uproot.numentries(?, ?, executor=?, to

18/22

Most common function calls/arg;

2832
2498
2193
874
865
564
455
406
283
265
248
246
235
234
233
226
221

Awkward Array

ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.
ak.

flatten(?)
num(?)
to_numpy (?)
sum(?, axis=1)
flatten(?,
sum (?)
ones_1like (?)
Array (?)
concatenate (?)
singletons (?)
num(?, axis=1)
concatenate (?,
any (?, axis=1)
zip (?, with_name='str')
to_pandas (?)

unzip (?)

firsts (?)

axis=None)

axis=1)

1iMmant nAattarne

Compare to web traffic on awkward-array.org. . .

function F#unique visitors #views avg. time
ak.Array 785 1100 3m33s
ak.concatenate 223 293 4m35s
ak.count 210 265 4m20s
ak.flatten 203 242 4m23s
ak.where 202 262 3mb4s
ak.num 184 235 3m07s
ak.to_numpy 181 218 3m25s
ak.mask 178 231 3mb2s
ak.zip 163 221 5m02s
ak.fill_none 162 214 3mlls
ak.broadcast_arrays 156 210 4m20s
ak.combinations 136 171 3mb58s
ak.sum 136 165 4m42s
ak.behavior 125 152 6m25s
ak.ArrayBuilder 124 161 3m02s
ak.cartesian 121 159 3m09s
ak.pad_none 114 146

3m00s
18

Use feature adoption to make decisions about deprecation

The colon in uproot.open ("file.root:dir/tree™) causes many problems:

¢ (©) Test a URL with an HTTP port number scikit-hep/uproot5#47

¢ (©) uproot4 unable to open ROOT file with colons in the name that uproot3 can scikit-hep/uproot5#79

* 1} Simplify file path/object splitter scikit-hep/uproot5#80

* - Removed the colon-parsing and replaced it with dicts. scikit-hep/uproot5#81

* (© Reading in multiple root files into pandas/dask DataFrame scikit-hep/uproot5#129

¢ [J) Reading an object with colon in its name scikit-hep/uproot5#365

* () Not possible to escape colon in filenames / avoid object-in-file path syntax (?) scikit-hep/uproot5#541
¢ () Aliases and cuts when reading ROOT file scikit-hep/uproot5#543

* (©) Accessing ROOT files with colons and double slashes in the path scikit-hep/uproot5#669

e %o pathlib.Path drops '//' (naturally), but it's sometimes used for URLs scikit-hep/uproot5#670

e i} fix: Ignore semicolon in EOS token when separating file name and object name scikit-hep/uproot5#875

19/22

Use feature adoption to make decisions about deprecation

The colon i

e (9 Test a URL
¢ (9 uproot4 un
« 13 Simplify fil
e }< Removed t
* (© Reading in
* [J) Reading ar|
¢ [)) Not possib
*) Aliases and
e (©) Accessing |
e fo pathlib.Paf]
e 1} fix: Ignore

no colon delimiter

using the colon delimiter

unknown (filename is a variable)

But removing it would upset at least 10% of workflows.

The deprecation period has to be long, if it is to be
removed at all.

problems:

p/uproot5#79

ep/uproot5#541

69

p#670

-hep/uproot5#875

19/22

Focus on Uproot's array-fetching functions

How do people use the 1ibrary="27?" argument?

if isinstance(tree, ast.Call):
name = ast.unparse (tree.func)
if (# select Uproot functions only
(name.endswith(".array") and name not in (
no library argument "np.array", "np.ma.array", "numpy.array",
(defaults to "ak")

"NUMPY_LIB.array", "array.array",
"self .NUMPY_LIB.array", "cupy.array",

9% — Iliig;g;}y’:%mething else...)))
or name.endswith(".arrays")
library="pd"

12% or name.endswith(".iterate")

or (name.endswith (".concatenate") and name not
"np.concatenate", "ak.concatenate",
"awk.concatenate", "awkward.concatenate",
"awkward.JaggedArray.concatenate",
"JaggedArray.concatenate",
"tf.concatenate",

81%

library="np"

When it's used, it's much more often
used for NumPy than for Pandas.))

or name.endswith (".dask"™)

matches.append (tree)
20/ 22

What libraries are Awkward and Uproot used with?

Awkward Array

numpy 90.5%

uproot 56.9%
matplotlib 49.8%
coffea 35.6%

pandas 31.2%

mplhep 20.4%

ROOT 11.9%

numba 11.8%

hist 8.8%
uproot_methods 8.4%
yaml 8.2%

utils 7.4%

tgdm 6.7%
boost_histogram 5.8%
tensorflow 5.0%
scipy 4.8%

vector 4.3%

torch 4.2%

seaborn 3.7%

yahist 3.6%

xgboost 3.2%
sklearn 2.9%

h5py 2.9%
memory_profiler 2.6%
pympler 2.3%

psutil 2.1%
correctionlib 1.9%
sortedcontainers 1.8%
cycler 1.7%

networkx 1.7%

pylab 1.5%

PIL 1.5%

helpers 1.4%
tabulate 1.4%

numpy 88.5%
matplotlib 59.4%
pandas 46.5%
awkward 31.7%
ROOT 23.6%
coffea 14.0%
mplhep 13.8%
tqdm 11.0%
tensorflow 9.4%
scipy 8.2%
sklearn 7.0%
uproot_methods 6.2%
xgboost 6.0%
yaml 5.8%
numba 5.8%
utils 5.1%
root_numpy 4.5%

Uproot
seaborn 3.9%
hist 3.9%
boost_histogram 3.9%
keras 3.5%
CMS_lumi 3.5%
histo_utilities 3.1%
analysis_utilities 3.1%
torch 2.9%
h5py 2.8%
progressBar 2.8%
cebefo_style 2.3%
lumi_utilities 2.1%
yahist 1.9%
common 1.8%
config 1.8%
root_pandas 1.8%
psutil 12.16/%3

Conclusions

» A lot of physics analysis code is public on GitHub and GitLab.

22/22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

» A lot of physics analysis code is public on GitHub and GitLab.

» We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

22/22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

>

>

>

A lot of physics analysis code is public on GitHub and GitLab.

We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

Studying tens of thousands of git repos is a modest data analysis (TB scale).
» Dask was very helpful!

22/22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

» A lot of physics analysis code is public on GitHub and GitLab.

» We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

» Studying tens of thousands of git repos is a modest data analysis (TB scale).
» Dask was very helpful!

» We can learn things that are useful for software library maintenance:
» user adoption of new versions
» most common function-call patterns
» decide if and when a feature can be deprecated
» discover which libraries are being used together, maybe motivate integrations

22/22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

» A lot of physics analysis code is public on GitHub and GitLab.

» We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

» Studying tens of thousands of git repos is a modest data analysis (TB scale).
» Dask was very helpful!

» We can learn things that are useful for software library maintenance:
» user adoption of new versions
» most common function-call patterns
» decide if and when a feature can be deprecated
» discover which libraries are being used together, maybe motivate integrations

» It's hard to identify class method calls in a dynamically typed language!

22/22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

Conclusions

» A lot of physics analysis code is public on GitHub and GitLab.

» We can find it by crawling the network, seeded by a package that is
well-known in the community, such as CMSSW or ROOT.

» Studying tens of thousands of git repos is a modest data analysis (TB scale).
» Dask was very helpful!

» We can learn things that are useful for software library maintenance:
» user adoption of new versions
» most common function-call patterns
» decide if and when a feature can be deprecated
>

discover which libraries are being used together, maybe motivate integrations
» It's hard to identify class method calls in a dynamically typed language!
How to get the analysis code (source data are in public S3 buckets):

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis—of-physicists
22/22

https://github.com/jpivarski-talks/2023-05-09-chep23-analysis-of-physicists

