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The determination of charged particle trajectories in colisions at the CERN Large
Hadron Colider (LHC) is an important but challenging problem, especially in the high
interaction density conditions expected during the future high-luminosity phase of the
LHG (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning
slgorthm tha hes succosstuly boen appled to this task by embeddng tracker cata
its, while edges —and
classifying However, their study -
software-based trigger applications has been limited due to their large mmpulaﬂcr\al
cost. In this paper, we introduce an automated transiation workflow, integrated into a
broader tool called h1s4m1, for converting GNNs into firnware for field-programmable
gate amays (FPGAS). We use this translation tool to implement GNNs for charged particie

tracking, the TrackML chall , on FPGAS with designs targeting

Javer Duareiferent graph sizes, task complextes, and “This work
Janeducsceds

VarkNasonr  COUIG enable the inclusion of charged particle tracking GNNS at the trigger level for
manGunoseds

HL-LHG experiments.
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et al, 2020) is a crucial task necessary for the accurate determination of the kinematics of the
particles produced in a collision event, including the position, direction, and momentum of the
partices 3t thei producion poits. This sk levriges speclzed detctrs positoned close
to the beam collision area in a strong magnetic field. When charged particles are created in

the collisions, their trajectories bend in the magnetic field and they onize the material of these
detectors as they move outwards from the production point, providing position measurements

Tt S and Tapms M (2022) Graph

trajectories of these charged particles and extract relevant particle kinematics. Current !xazkmg
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o increase dramaticall at higher beam intensites due to the presence of simultancous proton-
proton interactions (or pileup) and for more granular, more sensitive detectors. This motivates
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Abstract
Recent work h: thods h as graph neural ‘well suited

to address  variety of reconstruction

roblems in high-energy particle physics. In particular, particle tracking data are
nauralyrepresented as  graph by identifying silicon tracke it s nodes and pari

trajectories as edges, given a set of

real particle mjeclones In this wmk. we adapt

interaction network (IN) GNN

imilar to

those expected at the high-luminosity Large Hadron Collider. Assuning idelized it ﬁlmnng at various plmcle ‘momenta

thresholds, the IN"

and te of meas-

stage of GNN

and ‘The proposed IN

anfmwcnu:nwbimnnn.llysmxlleuhanpmv:wslyxluddeNNv king architectures; this is particularly

reduction in size is critical tracking i

Furthermore, the IN
Eff

y asetof

passing GNN.
towards both high-level and low-latency triggering applications.

Keywords Graph neural networks - Tracking - Particle physics

Introduction

Charged particle tracking is essential to many physics
reconstruction tasks including vertex finding (1, 2], parti-
cle reconstruction (3, 4], and jet flavor tagging [5-7). Cur-
rent tracking algorithms at the CERN Large Hadron Col-
lider (LHC) experiments [2, 8] are typically based on the

combinatorial Kalman filter [9-12] and have been shown
to scale worse than lincarly with increasing beam intensity
‘and detector occupancy (13]. The high-luminosity phase of
the LHC (HL-LHC) will see an order of magnitude increase
in luminosity [14], highlighting the need to develop new
tracking algorithms demonstrating reduced latency and
improved performance in high-pileup environments. To this
end, ongoing research focuses on both accelerating current
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and developing new Ira:kmg algorithms based on machine
learning (ML) techs

Geometric dbep learmng (GDL) [15-18]) is a growing
sub-field of ML focused on learning representations on non-
Euclidean domains, such as sets, graphs, and manifolds.
Graph neural networks (GNN) [19-24] arc the subset of

that operate on graph;

a set of nodes connected by edges, and have been explored
fora variety of tasks in high energy physics [25, 26]. Particle
tracking data are naturally represented as a graph; detec-
tor hits form a 3D point cloud and the edges between them
represent
gress by the Exa TrkX project and other collaborations has
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Abstract _Ingeneral pupose particle detectors, the paricle-
flow al sed to reconstruct

particle-level view of e cvent by combining information
from the calorimeters and the trackers, significantly improv-
ing the detector resolution for jets and the missing trans-
verse momentum. In view of the planned high-luminosity
upgrade of the CERN Large Hadron Collider (LHO), it
s necessary to revisit existing reconstruction algorithms
and ensure that both the physics and computational perfor-
mance are sufficient in an environment with many simul-
taneous proton-—proton interactions (pileup). Machine learn-
ing may offer a prospect for computationally effcient event
reconstruction that is well-suited to heterogeneous comput-
ing platforms, while significantly improving the reconstruc-
tion quality over rule-based algorithms for granular detec-
tors. We ntroduce MLPF, a novel, endto-end tainabe,

1 Introduction

Reconstruction algorithms at general-purpose high-cnergy
particle detectors aim to provide a holistic, well-calibrated
physics interpretation of the collision event. Variants of
the particle-flow (PF) algorithm have been used at the
CELLO (1], ALEPH [2], HI [3], ZEUS [4,5), DELPHI 6],
CDF [7-9], DO [10], CMS [11] and ATLAS [12] experi-
ments to reconstruct a particle-level interpretation of high-
multplicity hadron collision events, given individual detec-
tor elements such as tracks and calorimeter clusters from
amulti-layered, heterogencous, irregular-geometry detector.
‘The PF algorithm generally correlates tracks and calorime-
ter clusters from detector layers such as the electromagnetic

calorimeter (ECAL), hadron calorimeter (HCAL) and oth-
ers 10 reconstruct charged and neutral hadron candidates as

o v o

able. cnmpuunouﬂy efficient, and scalable graph neural
imized using a multi-task objective on simu-

tations are tuned using simulation for each specific experi-

oed v We report the physics and per-
formance of the MLPF algorithm on a Monte Carlo dataset
of top quark-antiquark pairs produced in proton-proton col-
lisions in conditions similar to those expected for the high-
luminosity LHC. The MLPF al

ment geometry
are critical for the best possible physics performance.
Recently, there has been significant interest in adapting
the PF reconstruction approach for future high-luminosity
ERN Large Hadron Collider

response with respect to a rule-based benchmark algo-
rithm and demonstrates computationally scalable particle-

(LHO) [13], as well as for proposed future collider experi-
ments such as the Future Circular Collider (FCC) [14, 15). PF
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is also a key driver in the detector design for
future lepton colliders [16-18]. While reconstruction algo-

the use of supervised machine learning (ML) to define recon-
struction parametrically based on data and simulation sam-
ples may improve the physics reach of the experiments by

a fixed computing budget. Reconstruction algorithms based
n ML may be well-suited to imegular, high-granularity
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Tracking machine learning challenge

ohase 1 | phase 2 (2018

Deftinition of an HL-LHC like detector
production of training/test dataset
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Abstract The ExaTrkX project has applied geometric
learning concepts such as metric learning and graph neu-
ral networks to HEP particle tracking. Exa TrkX's tracking
pipeline groups
didates and filters them. The pipeline, originally developed
using the TrackML dataset (a simulation of an LHC-inspired
tracking detector), has been demonstrated on other detec-
tors, including DUNE Liquid Argon TPC and CMS High-
Granulacty Calormete. Thi pape documents e devel

detector measurements to form track can-

fus Atkinson®, Mark Neubauer’, Gage DeZoort?,
lina Lazar®

position measurements from a tracking detector (known as

in
didates (or tracks. A track is defined as a list of spacepoints
associated by the patter recognition to a charged particle).
he number of particle track candidates varies signifi-
cantly from one experiment setup to another. For example,
in a High-Luminosity LHC (HL-LHC) [1] collision event,
due to the pile-up of multiple proton-proton collision per
bunch crossing, there are typically 5000 charged particles

about 50% of

ded to study the ph perfor-
‘mance of the Exa. TrkX pipeline onmﬁum (kML dataset,
a first step towards validating the pipeline using ATLAS and
CMS data. The pipeline achieves tracking efficiency and
purity similar to production tracking algorithms. Crucially
for future HEP applications, the pipeline benefits signifi-

and
to particles of interest.
A typical HEP offline tracking algorithm [3-5) has four
stages: spacepoint formation, track seeding, track following,
and track fitting. The spacepoint formation stage combines
thedestorceadoucll aw it st rom which the
deter-

ments scale close to linearly with the number of particles in
the event,
1 Introduction

Charged particle tracking plays an essential role in High-
Energy Physics (HEP), including particle identification and

i Trck seeding combines spacepoints in doublet ot
triplet seeds. Each sced provides an initial track dnuhun.
origin, and possibly a curvature, with associated ung

ties. The track following stage adds more spacepoints to e
seed by looking for matching spacepoints along the cxtrap-
olated trajectory. Finally a track fitting stage, which may be
combined with the track following, fits a trajectory through
the track spacepoints to assess the track quality and mea-

kinematics, vertex finding, lepton and flavor

jet tagging. At the core of particle tracking there i a patiern

recognition algorithm that must associate a list of 2D or 3D
*c-mail; xu@Iblgov (corrsponding author)
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‘momentum, origin, etc). To avoid biasing physics results,
each stage of the algorithm must have high efficiency, mean-
a fiducial region (e.g. pr > 1 GeV. In| < 4) as track candi-
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Reconstructing charged particle track segments with a quantum-enhanced support
vector machine
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Reconstructing the trajectories of charged particles from the collection of hits they leave in the
detectors of collider experiments like those at the Large Hadron Collider (LHC) is a challonging

minosity at the upgraded High Luminosity L}

ally with track densi

reconstruction.
INTRODUCTION

The Large Hadron Collider (LHC) is currently the
highest energy particle collider in the world. It accel-
erates beams of protons to almost the speed of light and
then collides them at a centre-of-mass energy of 13.6 TeV
at the centre of large, multi-purpose particle detectors
that are designed to reconstruct the outcome of those
collisions. Among the key physics objectives of the LHC
are precise measurements of the properties of the Higgs
boson, shedding light on the elusive particle(s) that may
constitute dark matter, and searching for a wide breadth
of ics phenomena beyond the Standard Model
(sM) i exote decay signatures like long-lived particles.

B To attain these physics goals, the LHC is preparing

for an upgrade that will deliver an order of magnitude
‘more data to the experiments by increasing the intensity
of the pmnn beams, resulting in a higher instantaneous
ery time the proton bunches croes (. At this upgraded
High Luminosity LHC (HL-LHC) the number of concur-
rent, overlapping proton-proton interactions (pileup) is
expected to reach up to 200, a significant increase from
the current average pileup of 40. Such a step change in
the running conditions of the collider will significantly
increase our cnpnb)hus to fulfil the goals of the LHC
However, it also presents challenges. The

ease in detector occupancy will impact
the performance of the entire pipeline, including data ac-
quisition, processing, and analysis, as well as simulating

combinatorics problem and computationally intensive. The ten-fold increase in the delivered lu-

HO will el n & vy densely populated dtectos

enironment. Tho time taken by conventona,techi s
e tl ity Acurately and oficiently assigning 4

ol racking dotoctor to the corret particl will b  computationdl bottie
tivated studying possible alternative approaches. This paper presents

‘machine learning algorithm that uses a support

hniques for

vector machine (SVM) with & quantum-cstimated
kernel to classify a set of three hits (triplets) as cither belonging to or not belonging to the same
pasticle track. The performance of the algorithm is then compared to a fully classical SVM. The
quantum algorithm shows an improvement in accuracy versus the classical algorithm for the inner-
most layers of the detector that are expected to be important for the initial sceding step of track

the collisions in the detector. This presents significant
overhead on the computational resources, with some l-
ements, such as reconstructing charged particle trajecto-
ries, becoming a major bottleneck.

To address these high demands on the computational
resources, numerous approaches are being pursued, rang-
ing from the development. of more cfficient algorithms
and the application of state-of-the-art machine learn-
ing techniques to the use of graphics processing units
(GPUs) [2, 3] to exccute code that is parallelizable.
One of the intriguing new avenues being pursued to
tackle these challenges is quantum computing. This new
paradigm offers a fundamentally new form of computing
by leveraging the phenomena of quantum mechanics and
opens the prospect of significantly speeding up our cur-
rent algorithms and performing calculations that could
only be done to some approximation with classical com-
puters.

Particle physics has scen a surge of interest in ascer-
taining how quantum computers may impact the future
of the field and establishing the scenarios in which they
may be most advantageous. The current Noisy Interme-
diate Scale Quantum (NISQ) devices (4], while a stepping
stone on the way to universal, fault-tolerant quantum
computers, have enabled many of these proof-of-principle
studies to be performed. This exploratory phase of ap-

lying current NISQ era quantum computers to challeng-
ing problems in particle physics will pave the way for the
emergence of new ideas and techniques needed to fully
exploit. quantum computation and identify the specific
problems for which they are most suitable.
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E] High-energy physics is facing a daunting computing
e challenge with the large datasets expected from the
H Received: 1 September 2021 upcoming High-Luminosity Large Hadron Collider
S Accepted:7 October 2021 in the next decade and even more so at future
e colliders. A key challenge in the reconstruction of
s events of simulated data and collision data is the
One contrbution of 3t a theme ssue .
“Quantum technalogies in partde physics'. e e
ajectories of charged particles. The field of s
" . computing shows promise for transformativ
Subject Areas: capabilities and is going through a cycle of upld
partide physic, and hence might provide a solution to
. this challenge. This article reviews current studies
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£ WM. Gray 1. Introduction
emaiheather gay@bercly e The high-energy physics experiments at the Large
Hadron Callider (LHC) located just outside Geneva,
Switzerland h: ormed the field of particle
physics, most nolably thmugh the exciting discovery
fa of the Higgs boson [12] by the ATLAS [3] and CMS
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[4] experiments. While analysis of the data from the
LHC is still ongoing, preparations are underway for
the daunting computing challenge of the large datasets
expected from the upgrade of the LHC, the High-
Luminosity LHC (HL-LHC) in the next decade and
future colliders to follow the HL-LHC. The physics
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very rich scientific outcome - and a dataset that is still in use
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TrackML dataset was restricted to a
model, based on fast simulation, and had a few features.
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https://www.kaggle.com/competitions/trackml-particle-identification/discussion/61455

Fvolution: ODD Tracking System

I 1| /] TrackML detector re-implemented using DD4hep and
13 | keeping the main teatures identical:
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Geant4 hit locations of the ODD detector. Material budget versus pseudo-rapidity.



| evel of Detall

Y Support cylinder The ODD aims to
describe a detector at a
similar level of detail as
current LHC experiments
are described.

tilt angle

= Support algorithmic,
software computing R&D
with realistic detector

Garbon foam coennde  JEOMeEtry, even future
Modie board J \ contextual data
O (alignment, conditions)

are possible.

Cooling pipe

Silicon sensor Connector

Innermost Pixel detector barrel, stave and module details of the ODD Tracker. [ full detector details |
Displayed with DD4hep/ROQOT.




Detector: EM Calorimeter

calorimeter

Recently added ODD

Electromagnetic Calorimeter
> high granularity Silicon-
Tungsten sampling

[ full detector details |

| 0.06 [ .................. S B = 0-490/0 @ 14

05%

IE |

T Simulation-level ﬁerformancé
* | Single Y events, n=0 |

0.02
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ODD Electromagnetic Calorimeter option
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Detector Expansion

Possible expansion with the
FCC-hh TileCalorimeter
(derivate of ATLAS Tile

Calorimeter).

Facilitated by DD4hep
detector description and
envelope definition.

Another option in study:
> Silicon based hadronic
calorimeter

FCC-hh Tile calorimeter - adjusted in size - to fit around the current ODD Tracker and EM Calorimeter [not in repository yet] .



Intertacing

ODD is described in DD4hep:

Geometry translation pipelines tor different
applications.

Qgithub/geanm 0 github/DD4hep

“ gitlab.cern/OpenDataDetector

xml description

l

C++ DetectorFactories

|

dd4hep: :geometry

B gdim/ DDG4 |«
Geant4 DDS1m
standalone embedded
simulation simulation

il EDM4hep

instantiates ROO T : : TGeometry

Q github/acts

\

acts

Reconstruction B

l

TrackML, csv
EDM4hep



https://gitlab.cern.ch/acts/OpenDataDetector
http://github.com/acts-project/acts/
https://github.com/AIDASoft/DD4hep
https://github.com/Geant4/geant4

Usage

1200 -

The ODD Tracking detector is heavily in use
In the development of the ACTS track

1000 A

reconstruction toolkit. . 1
~ development and testing of algorithms in a 500 -
realistic environment W
400 - ® ' o
> basis of the performance and regression y
. . 200 A i
monitoring of ACTS . i .
o 1

-0.04 -0.02  0.00 0.02 0.04
qoPyye — qopse  [Gev™!]

1cmp 20 cmps
- mode: 0.003 mode: -0.000

—®— Q95: 0.036 Q95: 0.035

o
A realistic detector is essential to allow for —#- Q68:0.007  —#— Q68: 0.004

. == mean: -0.002 e mean: -0.004
State-of-the art R&D and testing.

Example: development of GSF track fitter



Entries

monitored / reference

Usage

The ODD detector provides a traceable platform for performance monitoring,

algorithm development and optimisation.

700 |
600 |-
500
400 |
300 |
200

100

=
o
o

=
o
o

O
©
Ul

Pull of dO

—}— monitored

—— reference -

----- IR E

-4 —2 0 2 4
pull

Example: physics performance monitoring in ACTS.

......

.........
.........
.........
.........
.........
.........
.........
---------

......

.........

Example: Surface binning optimisation in ACTS for an ODD SS end cap.
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Usage

The ODD detector provides a unique
test bed for comparing machine
learning based models with numerical/
classical algorithmes.

o
X 1.8

1.6

1.4

1.2

1

0.8

FEprrrprrrprrrpreeprrrynl

0.6 [ —— validation X0 L oS

0.4 | —— Geantino X0

ti
| IIITIII

A
&
'l\)
! o
o
"
o
w
S

Example: auto-tuning of material map binning in ACTS
reconstruction geometry, comparison to Geant4 material budget.

[more @ CHEP23: ML ambiguity solving ]

Time comparison

B Exa.TrkX (on GPU)
25 - W Parameter Estimation
B Kalman Filter
Bl Seeding
2.0 - i Combinatorial Kalman Filter

Exa.TrkX CKF

Truth CKF Truth Tracking

Example: Comparison of execution speed of Exa.TrkX pipeline with
various combinatorial pattern recognition derivates.

[ more @ CHEP23: Exa.TrkX results ]
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https://indico.jlab.org/event/459/contributions/11453/
https://indico.jlab.org/event/459/contributions/11447/

Potential

ODD is planned to yield the a large dataset as a replacement ot the TrackML dataset.

Expressed interest as a testbed for further Exa.TrkX studies, fast calorimeter simulation
(successor of ML Fast Shower Sim Challenge), Geant4 GPU transport development

Install dependencies: ROOT, DD4Hep, Geant4, BOOST

git clone https://gitlab.cern.ch/acts/OpenDataDetector.git odd
cmake -S odd -B <b_dir> -DCMAKE_PREFIX PATH <externals>
cmake ——build <path_to_build _area>

runRDProject(config) | publish([](const auto& rio));

ll' MPL2

[ more @ CHEP23: ML Calo Challenge ]
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https://gitlab.cern.ch/acts/OpenDataDetector.git
https://indico.jlab.org/event/459/contributions/11731/
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Geant4 simulation

s
e

Geometry export of ODD into
ROOT geometry or .gltf is part of
the continuous integration testing

gltf file format is directly supported
phoenix event display, as is
DM4hep.

Alternative display export via ACTS
into native .obj or .svg (via ActSVG

===

23
2
e

s
—

e
=
A

== =

github/phoenix

of ttbar event displayed with Phoenix

t Event Display



https://github.com/HSF/phoenix

Summary

With the ODD we try to establish the next generation detector model
for algorithmic and computing R&D

> Highly realistic detector description and material modelling
Tracking detector and EM calorimeter defined and optimised

~ Supporting both fast (ActsFatras) and full simulation (Geant4)

> Embedded in DD4hep/EDM4hep ecosystem “

gitlab.cern/OpenDataDetector

O

mattermost/OpenDataDetector

> Extendable, interchangeable
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https://mattermost.web.cern.ch/acts/channels/opendatadetector
https://mattermost.web.cern.ch/acts/channels/opendatadetector
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Details - Pixel System

: /
Barrel oo Endcap discs
Overlapping modules D|SC NO/PO $620 mMmm
e Disc N1/P1 F720 mm
e Disc N2/P2 F840 mm
Layer O Disc N3/P3 F980 mm
Disc N4/P4 F1120 mm
| Disc N5/P5 F1320 mm
e Disc N6/P6 +1520 mm
Radius Staves phi Title angle
Layer O 34 mm 16 0.14
Layer 1 70 mm 32 0.14 Module Characteristics
Layer 2 116 mm 52 0.14 Silicon Pixel module
- Barrel (rectangular): 8.4 mm x 36 mm (half lengths)
Layer 3 172 mm /8 0.14 - Endcap (trapezoidal): 8.5/14.5 mm x 34 mm (half lengths)

10.5/16.5 mm x 34 mm (half lengths)
- thickness: 125 um

Contigurable pixel size, default 50 pm x 50 ym



Details - Short Strip System

Endcap
/ Rings
Disc NO/PO +1300 mm 3
Disc N1/P1 1500 mm 3
Disc N2/P2 F+1850 mm 3
Disc N3/P3 +2200 mm 3
Disc N4/P4 +2550 mm 3
Disc N5/P5 +2950 mm 3
Radius Staves phi Modules z
Layer O 260 mm 20 ” Module Characteristics
Layer | 560 mm >C 2 SEntaIﬁ:lic(jr:gte?riwlgigcjgr)sztgz rrr?r%dxuéeél mm (half lengths)
Layer 2 500 mm 78 21 - Endcap (trapezoidal): 18.4/32.2 mm x 72 mm (half lengths)
30.2/44.0 mm x 72 mm (half lengths)
Layer 3 660 mm 102 21 40.8/36.4 mm x 72 mm (half lengths)

- thickness: 250 um

Contigurable pitch size, default 50 ym



Details - Long Strip System

Barrel
Radius Staves phi Modules z
Layer O 260 mm 40 21
Layer 1 360 mm 56 21
Endcap
/ Rings
Disc NO/PO +1300 mm 2
Disc N1/P1 +1600 mm 2
Disc N2/P2 F+1900 mm 2
Disc N3/P3 2250 mm 2
Disc N4/P4 +2600 mm 2
Disc N5/P5 +3000 mm 2

Module Characteristics

axial side:

module gap

stereo angle
stereo side:

Double-sided Silicon Strip module
- Barrel (rectangular): 26 mm x 108 mm (half lengths)
- Endcap (trapezoidal): 53.2/58.6 mm x 78 mm (half lengths)
64.6/70 mm x 78 mm (half lengths)

- thickness: 250 pm
- stereo angle: 0.04

Contigurable pitch size



Details - EM calorimeter

Barrel

Hexadecagon (16-side polygon), 48 layers

Inner R 1250 mm
Outer R 1500 mm
Halflength Z 3050 mm
Endcap
40 layers
Inner R 340 mm
Outer R 1500 mm
Range Z F [3200-3450] mm

70k | B Beam p'ipe-S'hort Stllips-SloIenoidl

60|
ECAL barrel only
50+
40

30

20

10

M Pixel Bl Long Strips M EM Calorimeter

(8).0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
eta

Characteristics

ECAL with high granularity
- CALICE type, proposed for CLIC, CLD and ILD
- inspired CMS HGCal

Active pads:
- Silicon 5.1 mm x 5.1 mm Silicon
- Absorber: Tungsten

4.0

18



