MANAGING BUILD INFRASTRUCTURE AT ALICE USING HASHICORP NOMAD

Computing in High Energy Physics 2023, Norfolk, VA

Timo Wilken¹ ² Giulio Eulisse²

9 May 2023

¹E-mail: timo.wilken@cern.ch
²for the ALICE Collaboration
What do we build?

- \(O^2 \): software suite for data-taking, physics analysis, Monte-Carlo simulation, …
 - split across multiple repositories: \(O^2 \), \(O^2 \text{Physics} \), \(\text{QualityControl} \) and more
- Run 2 software still maintained for analysing old data
- alidist: pseudo-distribution of \(O^2 \) dependencies
 - designed to function on top of recent versions of CentOS, Alma, Ubuntu, MacOS, …
- nightly release builds, continuous integration (CI) compilation checks, unit and integration tests
- 1 non-trivial CI check completed every 2 minutes, on average
 - plus lots of fast rebuilds where nothing has changed
- …all on 5+ platforms (mostly) through containerization
resources: 600 CPU cores + 1.7 TiB memory

Nomad, Consul, Vault from Hashicorp, designed to complement each other

- **Nomad**: allocates jobs to machines; resource accounting
 - long-running jobs: release builders, custom CI
 - web services: user account admin, tarball servers
 - scheduled jobs: repository maintenance and cleanup

- **Consul**: generic key/value store and DNS
 - job discovery: *.service.consul DNS
 - **Traefik** auto-config for web access
 - job monitoring: simple health checks

- **Vault** stores secrets, using Consul as backend

- metrics of the whole cluster stored and visualised
Reasons for switching away from Mesos and Aurora

- Previous stack: Mesos + Marathon + Aurora
- Aurora not intensively developed any more
- Requires Python 2 (EOL since 2020) on server and developers’ machines
 - Difficult to install, deploy and maintain
- Some features difficult to integrate with or nonexistent
 - Autoscaling (or even manual scaling without restarts of all jobs)
 - Difficult to keep build caches “hot”
- Little monitoring and alerting integration
IMPROVEMENTS WITH NOMAD + CONSUL + VAULT

- simple deployment: static binary + systemd/launchd service + configuration = 3 files
- first-class support for web services: health checks, autoconfiguration
- more secure secrets management
- excellent monitoring & alerting support through Prometheus
 - resource use statistics (CPU, memory, disk)
 - alerts when build machines are unavailable or have problems
- …more features, for deeper future integration
Web services: health checks & Traefik autoconfiguration
Monitoring example: nightly build performance

generally running at 100% CPU capacity

spot problems easily, e.g. unused resources

Figure: CPU use of a sequence of nightly builds as a fraction of total allocated CPU resources (usually the entire VM).
MONITORING EXAMPLE: NIGHTLY BUILD PERFORMANCE

Figure: Working memory (RSS) use of a sequence of nightly builds. Total available memory on a typical build VM in green.
1. Nomad’s handling of disk space allocation
 - restarting daemon with non-empty disk confuses Nomad’s accounting
 - can cause scheduling issues much further down the line
 - must manually clean up the node and restart the Nomad agent process

2. Integration with CERN single sign-on
 - by default: token authentication with Nomad/Consul/Vault
 - could integrate SSO with Vault, which would then issue Nomad/Consul tokens
Future work integrating build infra with Nomad

- “true” autoscaling, based on real-time demand
 - manual scaling already much smoother than previously: build caches are kept most of the time, existing builders uninterrupted
 - remaining challenge is cache invalidation: scaling often invalidates multiple gigabytes of cached builds
- temporary configuration (e.g. for testing software deployment) through Consul instead of text files
- get build secrets from Vault only when needed, instead of storing them in env variables and relying on sanitisation during build