



**CLUSTER OF EXCELLENCE** QUANTUM UNIVERSE

SPONSORED BY THE





**Federal Ministry** of Education and Research

luigi analysis workflow

— Large Scale End-to-End Analysis Automation over Distributed Resources —

Marcel Rieger

CHEP 2023 - Norfolk

9.5.2023



### Motivational questions 2

- **Portability**: Does the analysis depend on ...
  - where it runs?
  - where it stores data?
    - Execution/storage should **not** dictate code design!
- **Reproducibility**: When a postdoc / PhD student leaves, ...
  - can someone else run the analysis?
  - is there a loss of information? Is a new framework required? ► Dependencies often **only** exist in the physicists head!
- **Preservation**: After an analysis is published ...
  - are people investing time to preserve their work?
  - can it be repeated after O(years)?
    - ▷ Daily working environment should provide preservation features **out-of-the-box**!
- Personal experience:  $\frac{2}{3}$  of "analysis" time for technicalities,  $\frac{1}{3}$  left for physics  $\rightarrow$  Physics output doubled if it were the other way round?

## law - luigi analysis workflows Marcel Rieger











### Landscape of HEP analyses 3

- Most analyses are both large and complex
  - Structure & requirements between workloads mostly undocumented

  - → Time-consuming & error-prone



- Workflow management must ...
  - provide full automation
  - **cover all possible use cases** → Examples on next slides

Manual execution & steering of jobs, bookkeeping of data across storage elements, different data revisions, ...

# → Execution through a single command





### Example: ttbb measurement visualization 4



## law - luigi analysis workflows Marcel Rieger





Results

### Example: ttbb measurement visualization 4



## law - luigi analysis workflows Marcel Rieger





Results

### Example: Fully orchestrated LHC Run 2 + 3 analysis with <u>columnflow</u> 5



law - luigi analysis workflows Marcel Rieger





Source

### Example: Analysis Grand Challenge (with ML) 6





## From Elliott's talk



 $\rightarrow$  Result















- Python package for building complex pipelines
- Development started at Spotify, now open-source and community-driven

# **Building blocks**

- Workloads defined as Task classes that can require other Tasks
- 2. Tasks produce output **Targets**
- 3. **Parameters** customize tasks & control runtime behavior
- Web UI with two-way messaging (task → UI, UI → task), automatic error handling, task history browser, collaborative features, command line interface, ...

## law - luigi analysis workflows Marcel Rieger

| > Watch           | - 493                       | 🔺 L         | Jnstar 15.2                                                                                                                                                                                                      | 2k                                                                                                                                                                                                                                                                  | ဗို Fork                                                                                                     | 2.3k               |                                      |
|-------------------|-----------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------|
|                   |                             |             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                              |                    |                                      |
| ••                | Luigi Task Visualis         | ser         | ×                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                              |                    |                                      |
| $\rightarrow$ C ( | D lx3agpu01.ph              | ysik.rwth-a | achen.de:8082/st                                                                                                                                                                                                 | atic/visua                                                                                                                                                                                                                                                          | liser/index.                                                                                                 | html Q             | . 🛧 🔎                                |
| Luigi Task (      | Status ≡                    | Task List   | Dependency Graph                                                                                                                                                                                                 | Workers                                                                                                                                                                                                                                                             | Resources                                                                                                    |                    |                                      |
|                   | PENDING TASKS<br><b>99</b>  |             | RUNNING TASKS <b>6</b>                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | DON<br>176                                                                                                   | E TASKS            | :                                    |
|                   | UPSTREAM FAIL<br><b>0</b>   | 0           | DISABLED TASKS<br><b>O</b>                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                              | FREAM DISA         |                                      |
|                   |                             |             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                              |                    |                                      |
| Displayin         | ng <b>RUNNING</b> , tasks . |             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                              |                    |                                      |
| Displayin         |                             |             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     | Filter                                                                                                       | teble:             |                                      |
|                   | ıtries                      |             | Details                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     | Filter                                                                                                       | table:             | Time                                 |
| how 10 🜩 en       |                             | \$Vs        | Details<br>noDeps=False, taskNar<br>paramFile=EMPTY_STR<br>setup=RunIISpring16M<br>notify=False, printStatu<br>sandbox=local_ttH_802<br>dCache=mriegerDESY,<br>printDeps=-1, printStor<br>purgeOutput=-1, printL | ING, log=-,<br>iniAODv2_13<br>us=-1,<br>X, version=tes<br>dataSource=t<br>re=EMPTY_ST                                                                                                                                                                               | FRING,<br>FeV_25bx_80X,<br>st2,<br>tth,                                                                      | table:<br>Priority | <b>Time</b><br>04/12/2016<br>minutes |
| how 10 \$ en      | itries<br>Name              |             | noDeps=False, taskNar<br>paramFile=EMPTY_STR<br>setup=RunIISpring16M<br>notify=False, printStatu<br>sandbox=local_ttH_802<br>dCache=mriegerDESY,<br>printDeps=-1, printStor                                      | ING, log=-,<br>iniAODv2_13<br>Is=-1,<br>X, version=tes<br>dataSource=t<br>re=EMPTY_ST<br>.og=False<br>gs=True, max<br>pochs=20, l2_<br>layers=5, dro<br>terval=10.0,<br>gPortion=0.5<br>pel=tth, trainS<br>ireH=False,<br>ents=1000000<br>eTT=False, gp<br>umber=50 | TRING,<br>TeV_25bx_80X,<br>tt2,<br>tth,<br>RING,<br>Jets=8,<br>_factor=0.0,<br>pGen=True,<br>Seed=123,<br>0, | Priority 🍦         | 04/12/2016                           |



- Luigi's execution model is make-like
  - 1. Create dependency tree for triggered task
  - 2. Determine tasks to actually run:
    - Walk through tree (top-down)
    - For each path, stop if all output targets of a task exist\*
- Only processes what is really necessary
- Scalable through simple structure
- Error handling & automatic re-scheduling

\* in this case, the task is considered complete





# 11 Example dependency trees



## law - luigi analysis workflows Marcel Rieger





# 12 Luigi in a nutshell

# reco.py

import luigi

from my\_analysis.tasks import Selection

class Reconstruction(luigi.Task):

dataset = luigi.Parameter(default="ttH")

def requires(self): return Selection(dataset=self.dataset)

def output(self): return luigi.LocalTarget(f"reco\_{self.dataset}.root")

def run(self): inp = self.input() # output() of requirements outp = self.output()

# perform reco on file described by "inp" and produce "outp" . . .

> python reco.py Reconstruction --dataset ttbar







### Law 14

- aw: extension **on top** of *luigi* (i.e. it does not replace *luigi*)
- Software design follows 3 primary goals:
  - 1. Experiment-agnostic core (in fact, not even related to physics)
  - 2. Scalability on HEP infrastructure (but not limited to it)
  - 3. Decoupling of run locations, storage locations & software environments ▶ Not constrained to specific resources
    - ▷ All components interchangeable
- Toolbox to follow an **analysis design pattern** 
  - No constraint on language or data structures  $\rightarrow$  Not a *framework*
- **Most used** workflow system for analyses in CMS
  - O(20) analyses, O(60-80) people
  - Central groups, e.g. HIG, TAU, BTV, ...

law - luigi analysis workflows Marcel Rieger

luigi analysis workflow







# 1. Job submission



- Idea: submission built into tasks, **no need to write extra code**
- Currently supported job systems: HTCondor, LSF, gLite, ARC, Slurm, CMS-CRAB
- Mandatory features such as automatic resubmission, flexible task  $\leftrightarrow$  job matching, job files fully configurable at submission time, internal job staging in case of saturated queues, ...
- From the htcondor at cern example:

```
lxplus129:law_test > law run CreateChars --workflow htcondor
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) running
                 CreateChars(branch=-1, start_branch=0, end_branch=26, version=v1)
going to submit 26 htcondor job(s)
submitted 1/26 job(s)
submitted 26/26 job(s)
14:35:40: all: 26, pending: 26 (+26), running: 0 (+0), finished: 0 (+0), retry: 0 (+0), failed: 0 (+0)
14:37:10: all: 26, pending: 0 (+0), running: 26 (+26), finished: 0 (+0), retry: 0 (+0), failed: 0 (+0)
14:37:40: all: 26, pending: 0 (+0), running: 10 (-16), finished: 16 (+16), retry: 0 (+0), failed: 0 (+0)
14:38:10: all: 26, pending: 0 (+0), running: 0 (+0), finished: 26 (+10), retry: 0 (+0), failed: 0 (+0)
INF0: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) done!
```

lxplus129:law\_test >





local htcondor local



# 16 Scaling up

# Job status polling from CMS HH combination

| 1 | 6:04:23: | all: | 3321, | pending: | 2821 | (+2821), running: 4         |
|---|----------|------|-------|----------|------|-----------------------------|
| 1 | 6:04:37: | all: | 3321, | pending: | 2829 | (+2829), running:           |
| 1 | 6:06:15: | all: | 3321, | pending: | 2827 | (-2), running: 6 (-         |
| 1 | 6:06:17: | all: | 3321, | pending: | 2813 | (-8), running: <b>424</b>   |
| 1 | 6:08:11: | all: | 3321, | pending: | 2820 | (-7), running: <b>8</b> (-  |
| 1 | 6:08:26: | all: | 3321, | pending: | 2810 | (-3), running: <b>422</b>   |
|   |          |      | -     |          |      | (-1), running: <b>9</b> (-  |
|   |          |      | -     |          |      | (-2), running: <b>420</b>   |
|   |          |      | -     |          |      | (-2), running: <b>5</b> (-  |
|   |          |      | -     | . )      |      | (-6), running: <b>422</b>   |
|   |          |      | -     |          |      | (-6), running: <b>7</b> (-  |
|   |          |      | -     |          |      | (-6), running: <b>420</b>   |
|   |          |      |       |          |      | (-5), running: <b>10</b> (  |
|   |          |      | -     |          |      | (-4), running: <b>415</b>   |
|   |          |      | -     |          |      | (-6), running: <b>11</b> (  |
|   |          |      | -     |          |      | (-4), running: <b>413</b>   |
|   |          |      | -     |          |      | (-5), running: <b>13</b> (  |
|   |          |      |       |          |      | (-4), running: <b>411</b>   |
|   |          |      |       |          |      | (-4), running: <b>14</b> (  |
|   |          |      | -     |          |      | (-5), running: <b>411</b>   |
|   |          |      |       |          |      | (-86), running: <b>92</b>   |
|   |          |      |       |          |      | (-96), running: <b>50</b> 2 |
|   |          |      | -     |          |      | (-15), running: <b>87</b>   |
|   |          |      |       |          |      | (-36), running: <b>53</b>   |
|   |          |      |       |          |      | (-39), running: <b>46</b>   |
|   |          |      |       |          |      | (-26), running: <b>55</b>   |
|   |          |      | -     |          |      | (-17), running: <b>35</b>   |
|   |          |      | -     |          |      | (-13), running: <b>55</b>   |
|   |          |      |       |          |      | (-4), running: <b>30</b> (  |
|   |          |      |       |          |      | (-11), running: <b>56</b>   |
|   |          |      | -     |          |      | (-9), running: 26 (         |
|   |          |      | -     |          |      | (-11), running: <b>56</b>   |
|   |          |      |       |          |      | (-9), running: 23 (         |
|   |          |      | F     |          |      | (-9), running: <b>559</b>   |
|   |          |      |       |          |      | (-9), running: <b>19</b> (  |
|   |          |      |       |          |      | (-11), running: <b>55</b>   |
| 1 | 6:41:25: | all: | 3321, | pending: | 2593 | (-10), running: <b>23</b>   |
|   |          |      |       |          |      |                             |

law - luigi analysis workflows Marcel Rieger

**426** (+426), finished: **74** (+74), retry: **0** (+0), failed: **0** (+0) **5** (+5), finished: **487** (+487), retry: **0** (+0), failed: **0** (+0) +1), finished: **488** (+1), retry: **0** (+0), failed: **0** (+0) (-2), finished: **84** (+10), retry: **0** (+0), failed: **0** (+0) +2), finished: **493** (+5), retry: **0** (+0), failed: **0** (+0) (-2), finished: **89** (+5), retry: **0** (+0), failed: **0** (+0) +1), finished: **493** (+0), retry: **0** (+0), failed: **0** (+0) (-2), finished: **93** (+4), retry: **0** (+0), failed: **0** (+0) -4), finished: **499** (+6), retry: **0** (+0), failed: **0** (+0) (+2), finished: **97** (+4), retry: **0** (+0), failed: **0** (+0) +2), finished: 503 (+4), retry: 0 (+0), failed: 0 (+0) (-2), finished: **105** (+8), retry: **0** (+0), failed: **0** (+0) (+3), finished: **505** (+2), retry: **0** (+0), failed: **0** (+0) (-5), finished: **114** (+9), retry: **0** (+0), failed: **0** (+0) (+1), finished: **510** (+5), retry: **0** (+0), failed: **0** (+0) (-2), finished: **120** (+6), retry: **0** (+0), failed: **0** (+0) (+2), finished: **513** (+3), retry: **0** (+0), failed: **0** (+0) (-2), finished: **126** (+6), retry: **0** (+0), failed: **0** (+0) (+1), finished: **516** (+3), retry: **0** (+0), failed: **0** (+0) (+0), finished: **131** (+5), retry: **0** (+0), failed: **0** (+0) (+78), finished: 524 (+8), retry: 0 (+0), failed: 0 (+0)2 (+91), finished: **136** (+5), retry: **0** (+0), failed: **0** (+0) (-5), finished: **544** (+20), retry: **0** (+0), failed: **0** (+0) **30** (+28), finished: **144** (+8), retry: **0** (+0), failed: **0** (+0) (-41), finished: **624** (+80), retry: **0** (+0), failed: **0** (+0) 50 (+20), finished: 150 (+6), retry: 0 (+0), failed: 0 (+0) (-11), finished: **652** (+28), retry: **0** (+0), failed: **0** (+0) **55** (+5), finished: **158** (+8), retry: **0** (+0), failed: **0** (+0) (-5), finished: **661** (+9), retry: **0** (+0), failed: **0** (+0) 51 (+6), finished: 163 (+5), retry: 0 (+0), failed: 0 (+0) (-4), finished: **674** (+13), retry: **0** (+0), failed: **0** (+0) 0 (-1), finished: **175** (+12), retry: 0 (+0), failed: 0 (+0) (-3), finished: **686** (+12), retry: **0** (+0), failed: **0** (+0) (-1), finished: **185** (+10), retry: **0** (+0), failed: **0** (+0) (-4), finished: **699** (+13), retry: **0** (+0), failed: **0** (+0) **56** (-3), finished: **199** (+14), retry: **0** (+0), failed: **0** (+0) (+4), finished: **705** (+6), retry: **0** (+0), failed: **0** (+0)



# 2. Remote targets



- Idea: work with remote files as if they were local
- Remote targets built on top of GFAL2 Python bindings
  - ▷ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
  - API **identical** to local targets  $\triangleright$

```
"FileSystem" configuration
```

```
# law.cfg
[wlcg fs]
base: root://eosuser.cern.ch/eos/user/m/mrieger
. . .
```



- Base path prefixed to all paths using this "fs"
- Configurable per file operation (stat, listdir, ...)
- Protected against removal of parent directories

# 2. Remote targets



- Idea: work with remote files as if they were local
- Remote targets built on top of GFAL2 Python bindings
  - ▷ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
  - API identical to local targets  $\triangleright$

Conveniently reading remote files

*# read a remote json file* with target.open("r") as f: data = json.load(f)



```
target = law.WLCGFileTarget("/file.json", fs="wlcg_fs")
```

# 2. Remote targets



- Idea: work with remote files as if they were local
- Remote targets built on top of GFAL2 Python bindings
  - ▷ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
  - API identical to local targets  $\triangleright$

Conveniently reading remote files

*# read a remote json file* 

data = target.load(formatter="json")



```
target = law.WLCGFileTarget("/file.json", fs="wlcg_fs")
# use convenience methods for common operations
```

# 2. Remote targets



- Idea: work with remote files as if they were local
- Remote targets built on top of GFAL2 Python bindings
  - ▷ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
  - API **identical** to local targets  $\triangleright$

Conveniently reading remote files

*# same for root files with context guard* 

with target.load(formatter="root") as tfile: tfile.ls()



```
target = law.WLCGFileTarget("/file.root", fs="wlcg_fs")
```

# 2. Remote targets



- Idea: work with remote files as if they were local
- Remote targets built on top of GFAL2 Python bindings
- ▷ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
  - API **identical** to local targets  $\triangleright$
  - Actual remote interface **interchangeable** (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, **local caching** (backup), configurable protocols, round-robin, ...

*# multiple other "formatters" available* 

graph = target.load(formatter="tensorflow") session = tf.Session(graph=graph)



Conveniently reading remote files

```
target = law.WLCGFileTarget("/model.pb", fs="wlcg_fs")
```

# 3. Environment sandboxing



- Diverging software requirements between typical workloads is a great feature / challenge / problem
- Introduce sandboxing:
  - ▶ Run entire task in **different environment**
- Existing sandbox implementations:
  - ▷ Sub-shell with init file (e.g. for CMSSW)
  - Virtual envs  $\triangleright$
  - Docker images  $\triangleright$
  - ▷ Singularity images







law - luigi analysis workflows Marcel Rieger





### Triggers: CLI, scripting and notebooks 19

# CLI

- law run Reconstruction --dataset ttbar --workflow htcondor
- Full auto-completion of tasks and parameters

# Scripting

- Mix task completeness checks, job execution & input/output retrieval with custom scripts
- Easy interface to existing tasks for prototyping

# Notebooks









# reco.py

import luigi

from my\_analysis.tasks import Selection

class Reconstruction(luigi.Task):

dataset = luigi.Parameter(default="ttH")

def requires(self): return Selection(dataset=self.dataset)

def output(self): return luigi.LocalTarget(f"reco\_{self.dataset}.root")

def run(self): inp = self.input() # output() of requirements outp = self.output()

# perform reco on file described by "inp" and produce "outp" . . .

> python reco.py Reconstruction --dataset ttbar









# reco.py

import luigi import law from my\_analysis.tasks import Selection

class Reconstruction(law\_Task):

dataset = luigi.Parameter(default="ttH")

def requires(self): return Selection(dataset=self.dataset)

def output(self): return law.LocalFileTarget(f"reco\_{self.dataset}.root")

def run(self): inp = self.input() # output() of requirements outp = self.output()

# perform reco on file described by "inp" and produce "outp" . . .

> law run Reconstruction --dataset ttbar

✓ luigi task Value law task

- □ Run on HTCondor
- $\Box$  Store on EOS
- □ Run in docker









# reco.py

import luigi import law from my\_analysis.tasks import Selection

class Reconstruction(law.Task, law.HTCondorWorkflow):

dataset = luigi.Parameter(default="ttH")

def requires(self): return Selection(dataset=self.dataset)

def output(self): return law.LocalFileTarget(f"reco\_{self.dataset}.root")

def run(self): inp = self.input() # output() of requirements outp = self.output()

# perform reco on file described by "inp" and produce "outp" . . .

> law run Reconstruction --dataset ttbar --workflow htcondor

✓ luigi task Value law task **Run on HTCondor**  $\Box$  Store on EOS □ Run in docker









# reco.py

import luigi import law from my\_analysis.tasks import Selection

class Reconstruction(law.Task, law.HTCondorWorkflow):

dataset = luigi.Parameter(default="ttH")

def requires(self): return Selection(dataset=self.dataset)

def output(self): return law.WLCGFileTarget(f"reco\_{self.dataset}.root")

def run(self): inp = self.input() # output() of requirements outp = self.output()

# perform reco on file described by "inp" and produce "outp" . . .

> law run Reconstruction --dataset ttbar --workflow htcondor

✓ luigi task Value law task Run on HTCondor Store on EOS □ Run in docker









# reco.py

import luigi import law from my\_analysis.tasks import Selection

## class Reconstruction(law.SandboxTask, law.HTCondorWorkflow):

dataset = luigi.Parameter(default="ttH") sandbox = "docker::cern/cc7-base"

def requires(self): return Selection(dataset=self.dataset)

def output(self): return law.WLCGFileTarget(f"reco\_{self.dataset}.root")

def run(self): inp = self.input() # output() of requirements outp = self.output()

# perform reco on file described by "inp" and produce "outp" . . .

> law run Reconstruction --dataset ttbar --workflow htcondor

law - luigi analysis workflows Marcel Rieger

✓ luigi task Value law task **Run on HTCondor** Store on EOS Run in docker









# 21 Summary

Resource-agnostic workflow management **essential** for large & complex analyses → Need for a flexible **design pattern** to automate arbitrary workloads





workflow engine

layer for HEP & scale-out features (experiment independent)

- → End-to-end automation of analyses over distributed resources

- → github.com/riga/law, law.readthedocs.io
- → github.com/spotify/luigi, luigi.readthedocs.io

**Collaboration & contributions welcome!** 

law - luigi analysis workflows Marcel Rieger





→ All information transparently encoded through tasks, targets & requirements → Full decoupling of run locations, storage locations & software environments → Allows to build frameworks that check every point in the CMS analysis wishlist (mostly exp. agnostic)





Backup

# 23 Other "workflow" engines





## • Metrics for comparison

- Pythonic usage
- Built-in features
- Configurability

■ ...

law - luigi analysis workflows Marcel Rieger





# Low-level array processing vs. high-level embedding

■ Usage Overhead (requires a DB, server, custom hardware, ...)



# 24 Existing WMS: MC production



# Tailored systems

- Structure known in advance
- Workflows static & recurring
- One-dimensional design
- Special production infrastructure
- Homogeneous software requirements

→ Requirements for HEP analyses mostly orthogonal

## Wishlist for end-user analyses

- Structure "iterative", a-priori unknown
- Dynamic workflows, fast R&D cycles
- DAG with arbitrary dependencies
- Incorporate *any* existing infrastructure
- Use custom software, everywhere





# 25 A typical example: ML workflow with uncertainties









# 25 A typical example: ML workflow with uncertainties







# 25 A typical example: ML workflow with uncertainties







# 25 A typical example: ML workflow with uncertainties







# 26 Hands-on!

- Print character frequencies in the "loremipsum" placeholder text (from examples/loremipsum)
  - ▶ Fetch 6 paragraphs as txt files from some server
  - Count character frequencies and save them in json  $\triangleright$
  - Merge into a single json file  $\triangleright$
  - Print frequencies  $\triangleright$



• Additional example: Workflow using CERN HTCondor







#### Things to try 27

#### Interactive parameters

- Append --print-status RECURSION\_LEVEL[,TARGET\_LEVEL]
- Append --print-deps RECURSION\_LEVEL
- Append --remove-output RECURSION\_LEVEL[,MODE], [RESTART]
- Append --fetch-output RECURSION\_LEVEL[,MODE],[DIRECTORY]

Parallelize

Append --workers 4

#### • Add a task

- LinearizeChars
  - ▷ Create an ordered string "aaaaabbbccdddeeeeeeeeee..." from all existing characters and save it in a text file





# 28 Workflows: General ideas

## Many tasks exhibit the same overall structure and/or purpose

- "Run over N existing files" / "Generate N events/toys" / "Merge N into M files"
- All these tasks can **profit from the same features** 
  - $\triangleright$  "Only process file x and/to y", "Remove outputs of "x, y & z", "Process N files, but consider the task finished once M < N are done", "..."
- $\rightarrow$  Calls for a generic container object that provides guidance and features for these cases

#### Workflow "containers"

- Task that introduces a parameters called --branch b (luigi.IntParameter)
  - b >= 0: Instantiates particular tasks called "branches"; run() will (e.g.) process file b  $\triangleright$
  - b = -1: Instantiates the workflow container itself; run() will run\* all branch tasks  $\triangleright$
  - \*

#### **Practical advantages**

- Convenience: same features available in all workflows (see next slides)
- Scalability and versatility for remote workflows
  - ⊳ Jobs:
  - Luigi:  $\triangleright$
  - ▶ Remote storage: Allows batched file operations instead of file-by-file requests

# How branch tasks are run is implemented in different workflow types: **local** or several **remote ones**

Better control of jobs, submission, task-to-job matching ... (see next slides) Central scheduler breaks when pinged by O(10k) tasks every few seconds





# 29 Workflows: example usage

- Tasks that each write a single character into a text file
- Character assigned to them though the branch map as their "branch data"

```
import luigi
import law
from my_analysis.tasks import AnalysisTask
class WriteAlphabet(AnalysisTask, law_LocalWorkflow):
    def create_branch_map(self):
        chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        return dict(enumerate(chars))
    def output(self):
       return law.LocalFileTarget(f"char_{self.branch}.txt")
    def run(self):
        # branch_data refers to this branch's value in the branch map
        self.output().dump(f"char: {self.branch_data}", formatter="txt")
```





# 30 Workflows: remote workflows & jobs

#### 6 remote workflow implementations come with law

- htcondor, glite, lsf, arc, slurm, cms-crab (in PR#150)
- Based on generic "job manager" implementations in contrib packages

#### Job managers fully decoupled from most law functionality

- Simple extensibility
- No "auto-magic" in submission files, rather minimal and configurable through tasks
- Usable also without law

#### Most important features

- Job submission functionality "declared" via task class inheritance
- Provision of software and job-specific requirements through workflow\_requires()
- Control over remote jobs through parameters:

| $\[Delta]$ | branch        | branches      | : | gra |
|------------|---------------|---------------|---|-----|
|            | acceptance    | tolerance     | : | de  |
| $\[Delta]$ | poll-interval | walltime      | : | CO  |
|            | tasks-per-job | parallel-jobs | : | CO  |

anular control of which tasks to process efines when a workflow is complete / failed ontrols the job status polling interval and runtime : control of resource usage at batch systems





## 31 Effective remote targets — "Localization"

```
# coding: utf-8
     # flake8: noqa
 2
 3
     import luigi
 4
 5
     import law
 6
     from my_analysis.tasks import Selection
     from my_analysis.algorithms import awesome_reconstruction
 8
 9
10
     class Reconstruction(law.Task):
11 \sim
12
13
         def requires(self):
             return Selection.reg(self)
14
15
         def output(self):
16
             return law.wlcg.WLCGFileTarget("/some/remote/path.parquet")
17
18
         def run(self):
19 \sim
20
             # !!!
21
             # awesome reconstruction is expecting local paths
22
             with self.input().localize("r") as inp:
23 ~
                 with self.output().localize("w") as outp:
24 ~
                      awesome_reconstruction(inp.path, outp.path)
25
26
```

law - luigi analysis workflows Marcel Rieger





## 31 Effective remote targets — "Localization"

```
# coding: utf-8
     # flake8: noqa
 2
 3
     import luigi
 4
     import law
 5
 6
     from my_analysis.tasks import Selection
 8
 9
10
     class Reconstruction(law.Task):
11 \sim
12
         def requires(self):
13
              return Selection.reg(self)
14
15
         def output(self):
16
17
18
19
         @law.decorator.localize
20 \sim
         def run(self):
21
          # !!!
22
23
24
25
26
```

law - luigi analysis workflows Marcel Rieger

from my\_analysis.algorithms import awesome\_reconstruction return law.wlcg.WLCGFileTarget("/some/remote/path.parquet") # awesome reconstruction is expecting local paths

> # but that's ok since the decorator does the localization awesome\_reconstruction(self.input().path, self.output().path)





# 32 Effective remote targets — Caching

• Local cache for remote targets



law - luigi analysis workflows Marcel Rieger

#### remote storage





# 32 Effective remote targets — Caching

• Local cache for remote targets



law - luigi analysis workflows Marcel Rieger

# local cache remote storage





• Local cache for remote targets



#### • Simple configuration

When enabled, all operations on remote targets are cached

law.cfg

[wlcg\_fs]

use\_cache: True cache\_root: /tmp/mrieger/wlcg\_fs\_cachhe cache\_max\_size: 10GB

law - luigi analysis workflows Marcel Rieger



base: root://eosuser.cern.ch/eos/user/m/mrieger/myproject





# 33 "Realistic" HEP workflow management

#### **Consider this example again**

- law run Reconstruction --dataset ttbar --workflow htcondor >
- $\mathcal{O}(500 4k)$  files, stored either locally or remotely
- Any workflow engine will first check if things need to be rerun  $\triangleright$   $\mathcal{O}(500 - 4k)$  file requests (via network)!
  - $\triangleright$  Prepare for admins to find you  $\bullet \bullet$
- What **aw** does
  - ▷ Reconstruction is a workflow
  - Workflows output a so-called **TargetCollection**'s, containing all outputs of its branch tasks  $\triangleright$
  - **TargetCollection**'s can check if their files are located in the same directory  $\triangleright$
  - $\triangleright$  If they do, perform a single (remote) **listdir** and compare basenames  $\rightarrow$  single request

#### There is no free lunch

- A realistic workflow engine
  - ▷ can make some good, simple assumptions based on known best-practices BUT

• Our HEP resources (clusters, grid, storage elements, software environments) are very **inhomogeneous** 

▶ it should always allow users to transparently change decisions & configure every single aspect!





## 34 Abstraction: analysis workflows

- Workflow, decomposable into particular workloads
- Workloads related to each other by common interface
  - In/outputs define directed acyclic graph (DAG)
- Alter default behavior via parameters
- Computing resources
  - Run location (CPU, GPU, WLCG, ...)
  - Storage location (local, dCache, EOS, ...)
- Software environment
- Collaborative development and
- Reproducible intermediate and

law - luigi analysis workflows Marcel Rieger









#### 36 Working with remote targets

import law

from my\_analysis import SomeTaskWithR00T0utput, some\_executable

law.contrib.load("wlcg")

class MyTask(law.Task):

def requires(self): return SomeTaskWithR00TOutput.reg(self)

def output(self):

def run(self):

. . .

*#* to use its local path for some executable # remote location once the context exits) with self.output().localize("w") as tmp\_output: some\_executable(tmp\_output.path)

#### @law.decorator.localize

def run(self): # when wrapped by law.decorator.localize # self.input() and self.output() returns localized *#* representations already and deals with subsequent copies some\_executable(self.output().path)

```
return law.wlcg.WLCGFileTarget("large_root_file.root")
```

```
# using target formatters for loading and dumping
with self.input().load(formatter="uproot") as in_file:
    with self.output().dump(formatter="root") as out_file:
```

```
# using localized representation of (e.g.) output
# (the referenced file is automatically moved to the
```













# 38 Local caching (1)



law - luigi analysis workflows Marcel Rieger

Configuration 🖙





# 39 Local caching (2)



*law/python* process

law - luigi analysis workflows Marcel Rieger

Configuration 🖙

Local cache





Workflows

# 41 Workflows: General ideas

## Many tasks exhibit the same overall structure and/or purpose

- "Run over N existing files" / "Generate N events/toys" / "Merge N into M files"
- All these tasks can **profit from the same features** 
  - $\triangleright$  "Only process file x and/to y", "Remove outputs of "x, y & z", "Process N files, but consider the task finished once M < N are done", "..."
- → Calls for a generic container object that provides guidance and features for these cases

#### Workflow "containers"

- Task that introduces a parameters called --branch b (luigi.IntParameter)
  - b >= 0: Instantiates particular tasks called "branches"; run() will (e.g.) process file b  $\triangleright$
  - b = -1: Instantiates the workflow container itself; run() will run\* all branch tasks  $\triangleright$
  - \*

#### **Practical advantages**

- Convenience: same features available in all workflows (see next slides)
- Scalability and versatility for remote workflows
  - Jobs: Better control of jobs, submission, task-to-job matching ... (see next slides)  $\triangleright$
  - Luigi: Central scheduler breaks when pinged by O(10k) tasks every few seconds  $\triangleright$
  - ▶ Remote storage: allows batched file operations instead of file-by-file requests

```
How branch tasks are run is implemented in different workflow types: local or several remote ones
```





## 42 Workflows: example implementation

|    |                      | <pre>class Workflow(law.BaseTask):</pre>                                                                                                                                                      |  |  |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    |                      | <pre>branch = luigi.IntParameter(default=-1</pre>                                                                                                                                             |  |  |
| Сс | ommon                | <pre>@property def is_workflow(self):     return self.branch == -1</pre>                                                                                                                      |  |  |
|    |                      | <pre>def branch_tasks(self):     return [self.req(self, branch=b) f</pre>                                                                                                                     |  |  |
|    |                      | <pre>def workflow_requires(self):     """" requirements to be resolved be</pre>                                                                                                               |  |  |
|    | /orkflow<br>specific | <pre>def workflow_output(self):     """ output of the workflow (usuall</pre>                                                                                                                  |  |  |
|    |                      | <pre>def workflow_run(self):     """" run implementation """"</pre>                                                                                                                           |  |  |
| •  | emented<br>y task    | <pre>def create_branch_map(self):     """ Maps branch numbers to arbitra     ``return {0: "file_A.txt", 1:         To be implemented by inheritin     """     raise NotImplementedError</pre> |  |  |
|    |                      | <pre>def requires(self):     """ usual requirement definition "</pre>                                                                                                                         |  |  |
|    |                      | <pre>def output(self):     """" usual output definition """"</pre>                                                                                                                            |  |  |
|    |                      | <pre>def run(self):     """ usual run implementation """</pre>                                                                                                                                |  |  |
|    |                      |                                                                                                                                                                                               |  |  |



#### for b in self.create\_branch\_map()]

efore the workflow starts """

ly a collection of branch outputs) """

When "is\_workflow",
 seen by luigi as
 requires(), output()
 and run()

ary payloads, e.g.
"file\_C.txt", 2: ....}``
.ng tasks.

.....



## 43 Workflows: example usage

- Tasks that each write a single character into a text file
- Character assigned to them though the branch map as their "branch data"

```
import luigi
import law
from my_analysis.tasks import AnalysisTask
class WriteAlphabet(AnalysisTask, law_LocalWorkflow):
    def create_branch_map(self):
        chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        return dict(enumerate(chars))
    def output(self):
        return law.LocalFileTarget(f"char_{self.branch}.txt")
    def run(self):
       # branch_data refers to this branch's value in the branch map
```

law - luigi analysis workflows Marcel Rieger

self.output().dump(f"char: {self.branch\_data}", formatter="txt")





# 44 Workflows: remote workflows & jobs

#### 6 remote workflow implementations come with law

- htcondor, glite, lsf, arc, slurm, cms-crab (in PR#150)
- Based on generic "job manager" implementations in contrib packages

#### Job managers fully decoupled from most law functionality

- Simple extensibility
- No "auto-magic" in submission files, rather minimal and configurable through tasks
- Usable also without law

#### Most important features

- Job submission functionality "declared" via task class inheritance
- Provision of software and job-specific requirements through workflow\_requires()
- Control over remote jobs through parameters:

| $\triangleright$ | branch        | branches      | : | gra |
|------------------|---------------|---------------|---|-----|
| ⊳                | acceptance    | tolerance     | : | de  |
|                  | poll-interval | walltime      | : | CO  |
| ⊳                | tasks-per-job | parallel-jobs | • | CO  |

anular control of which tasks to process efines when a workflow is complete / failed ontrols the job status polling interval and runtime : control of resource usage at batch systems





Miscellaneous

#### Package structure 46



- $\rightarrow$  Could be added directly to luigi





#### 46 Package structure





# 47 luigi/law architecture



law - luigi analysis workflows Marcel Rieger





# 48 DAG abstraction



law - luigi analysis workflows Marcel Rieger

#### Workflow (DAG)







#### Links 49

- *law luigi* analysis workflow
  - Repository
  - Paper
  - Documentation
  - Minimal example
  - HTCondor example
  - Contact

- r github.com/riga/law
- arXiv:1706.00955 (CHEP16 proceedings)
- Read law.readthedocs.io (in preparation)
- Image Marcel Rieger
- *luigi* Powerful Python pipelining package (by Spotify)
  - Repository
  - Documentation
  - "Hello world!"

- Image github.com/spotify/luigi
- Read Inigi.readthedocs.io

- Technologies
  - GFAL2
  - Docker
  - Singularity

- dmc.web.cern.ch/projects/gfal-2/home
- INS™ docker.com
- Image singularity.lbl.gov

```
github.com/riga/law/tree/master/examples/loremipsum
mage github.com/riga/law/tree/master/examples/htcondor at cern
```

github.com/spotify/luigi/blob/master/examples/hello world.py





columnflow

# 51 Example: large scale analyses

- **columnflow**: Backend for large-scale columnar analyses
  - Reads and writes columns only if necessary
  - Creates new columns and merges with existing ones at the latest possible instance
  - Stores intermediate outputs for
    - ▷ computations downstream
    - sharing results of same computations across groups  $\triangleright$
    - applications requiring per-event info (ML)  $\triangleright$
    - studies done by students  $\triangleright$
    - debugging purposes  $\triangleright$
    - → difference to map-reduce pattern in coffea processors
  - Heavy use of bare NumPy & TensorFlow & awkward, plus coffea NanoScheme behavior
  - Full resolution of systematic uncertainties (next slide)
  - Checks 15/17 points of the CMS analysis wishlist in the ATTF report

#### law - luigi analysis workflows Marcel Rieger

GetDatasetLFN co umn CalibrateEven SelectEvent (using **aw** & **order**) ReduceEvents MergeSelectionStats MergeReductionStat ergedReducedEver CreateCutflowHis PrepareMLEven otCutflowVaria lotCutflowVariables2 AergeMLEvent MLTraining CreateHistogram Merging 2 ∧ergeHistogran MergeShiftedHistogra data hists

PlotVariables1c

PlotVariables2d

PlotShiftedVariables1

workflow *suggested* by columnflow, but can be fully customized







WriteDatacards









"nominal"







"nominal"

"tune(up|down)"

"jec(up|down)"

"pileup(up|down)"





. . .



### Key idea

Tasks *know* which uncertainties

- ▷ they implement
- they *depend on*  $\triangleright$ (through upstream tasks)

"nominal"







#### Key idea

Tasks *know* which uncertainties

- ▷ they implement
- they *depend on*  $\triangleright$ (through upstream tasks)







#### Key idea

Tasks *know* which uncertainties

- ▷ they implement
- they *depend on*  $\triangleright$ (through upstream tasks)

reuses all "nominal" outputs above SelectEvents









