
Modern Software Development for
JUNO offline software

Xingtao Huang, Teng Li, Weidong Li, Tao Lin, Jiaheng Zou
lintao@ihep.ac.cn

CHEP 2023

Norfolk, Virginia, USA

May 8-12, 2023

mailto:lintao@ihep.ac.cn

Outline

• Introduction

• Modern software development for JUNOSW
• Development using CMake and Git

• Deployment using junoenv, container, and Gitlab runner

• Summary and plan

2

Introduction

• JUNO: Jiangmen Underground Neutrino Observatory
• Rich physics program [1]

• Neutrino Mass Ordering and Precise measurement of 3
oscillation parameters

• Reactor neutrinos, Supernova burst neutrinos, Geo
neutrinos, Atmospheric neutrinos, and Solar neutrinos

• JUNO detector
• 700 m deep underground
• Central detector: 20 kton LS with 3%@1MeV of energy

resolution.
• Water Cerenkov detector and Top Tracker

• Lifetime: 20+ years

3[1] JUNO Collaboration, Prog.Part.Nucl.Phys. 123 (2022) 103927

JUNOSW: JUNO offline software

4

For details, see Xingtao’s talk.

The development of JUNOSW (originally
called JUNO offline) starts in 2012.

• Operating System
• SL5 -> SL6 -> CentOS 7

• Compiler
• GCC 4.1.2 -> 4.4.7 -> 4.9.4 -> 8.3.0 -> 11.2.0

• Build tool and version control
• CMT -> CMake

• SVN/Trac -> Git/Gitlab

Applications: SNiPER Algorithms
Core Software: SNiPER framework, ROOT I/O, Database, etc.
External Libraries: ROOT, Geant4, Boost, Python, etc.

Modern software development in JUNOSW

• Following the best practices from HSF [1], the
migration to CMake/Git had been done for
JUNOSW.

• Use CMake to reduce the building time and
support the different use cases for online and
offline environments.

• Adopt the git-based workflow to improve the code
quality with code review and CI.

• To migrate smoothly, helper scripts have
been developed.

5

Development

Deployment

CMake

CMake
Macros

git-
junoenv

build.sh
script

GitLab

Dockerjunoenv Gitlab
Runner

Git

[1] HSF-CWP-2017-13: Software Development, Deployment and Validation. arXiv:1712.07959

CMake (1)

• When moving from CMT to CMake, follow
the instructions in Modern CMake [1].

• CMake macros and functions are developed
to simplify the usage of CMake.

• All the packages in JUNOSW are built in the same
manner.

• The source code files under “src” are
automatically used to build the library.

• Targets are used to describe the dependencies.

• Extra environment variables could be set.

6[1] Modern CMake: https://cliutils.gitlab.io/modern-cmake/

https://cliutils.gitlab.io/modern-cmake/

CMake (2)

In order to support both online and offline
environments, the following strategies are used:

• A script called “build.sh” is used for both cases.
Use the environment variable to switch the
build mode.

• When the online mode is detected, the main
CMakeLists.txt will load CMakeLists.online.txt
instead of CMakeLists.default.txt.

• Generator expressions are used to control the
build flags.

7

git-junoenv

• When using SVN and CMT, developers could check out and build some packages
instead of the whole project.

• In order to support this feature, a shell script called git-junoenv is developed to
extend git, managing the packages to be checkout and built.

• The core part is still the sparse checkout in git. The git ls-files is used to list the available
packages.

• When a package is checked out, it will be also registered in CMakeLists.user.txt. When
building the project, CMake will use CMakeLists.user.txt.

8

$ git junoenv init-project junosw && cd junosw # get the junosw without packages
$ git junoenv list-pkgs # list all the available packages
$ git junoenv add-pkg Reconstruction/OMILREC # checkout a package

junoenv (1)

• It is a collection of shell scripts to deploy external libraries and JUNOSW.
• Modularized by bash functions, which are inspired by ENV [1].

• About 50+ external libraries are supported. About 30+ libraries are deployed.

• Patches for the external libraries are also maintained in the same project.

• The versions are collected for each release.

9[1] ENV, developed by Simon Blyth, https://juno.ihep.ac.cn/~blyth/env/notes/

https://juno.ihep.ac.cn/%7Eblyth/env/notes/

junoenv (2)

• When deploying the software into CVMFS, the prefix is different from the original
prefix when building software.

• However, we can’t run “make install” again on the CVMFS server.

• Use the paths with the same length and replace the prefix path
• Inspired spack [1]

• Solves the problems when the libraries or files are hardcoded with full paths.

• Use “sed” to replace the paths for both libraries and software links.

10[1] spack: https://github.com/spack/spack

Docker image

• Two types of Docker images are prepared
• Lightweight image with CVMFS clients installed.

• Full image with all the external libraries installed.

11

Lightweight image Full image

Use cases CI; Develop in users’
computer (need network)

Develop in users’
computer (offline)

Image size
(compressed)

372.87 MB (CentOS 7) 17.29 GB (CentOS 7)
20.37 GB (Ubuntu 22.04)

Privileged in
Docker

Needed (required by
CVMFS)

Not necessary

The lightweight image is used in the Gitlab CI.
CVMFS is mounted first. Then the runtime
environment is setup.

When the external libraries are upgraded, the
CI could access them by using the latest release.

Gitlab Runner

• Gitlab Group Runners are deployed in a self-hosted Kubernetes cluster.
• Gitlab agents are used to connect Gitlab and Kubernetes. Then the Gitlab runners are

managed by the Gitlab agents.

• All the configurations are managed in GitLab repositories.

12

Summary and plan

• Modern development and development for JUNOSW
• CMake macros are developed and a high-level script is used by users.

• git-junoenv is developed to partially check out and build packages.

• junoenv is used to deploy JUNOSW and external libraries.

• Docker and Kubernetes are also used to support CI.

• Plan: evaluate the migration from junoenv to spack
• Spack is a package management tool, which has already been adopted in the Key4hep [1].

• We hope to benefit from spack, including the reuse of the existing libraries and validation of
the software stack by other experiments. This could be important when moving to new
operating systems or architectures in the future.

13[1] Valentin Volkl, vCHEP 2021, Building HEP Software with Spack

Abstract

• The Jiangmen Underground Neutrino Observatory (JUNO), under construction in South China, primarily aims
to determine the neutrino mass hierarchy and the precise measure oscillation parameters. The data-taking is
expected to start in 2024 and plans to run for more than 20 years. The development of JUNO offline
software (JUNOSW) started in 2012, and it is quite challenging to maintain the JUNOSW for such a long time.
In the last ten years, tools such as Subversion, Trac, and CMT had been adopted for software development.
However, there are some new requirements, such as how to reduce the building time for the whole project,
how to deploy offline algorithms to an online environment, and how to improve the code quality with code
review and continuous integration. To meet the further requirements of software development, modern
development tools are evaluated for JUNOSW, such as Git, GitLab, CMake, Docker, and Kubernetes. This
contribution will present the software development system based on these modern tools for JUNOSW and
the functionalities we have achieved: CMake macros are developed to simplify the build instructions for
users; CMake generator expressions are used to control the build flags for the online and offline
environments; a tool named git-junoenv is developed to help users partially checkout and build the software;
a script is used to build and deploy the software on the CVMFS server; a Docker image with CVMFS client
installed is created for continuous integration; a GitLab agent is set up to manage GitLab runners in
Kubernetes with all the configurations in a GitLab repository. In late 2022, the migration had been done.

14

	Modern Software Development for JUNO offline software
	Outline
	Introduction
	JUNOSW: JUNO offline software
	Modern software development in JUNOSW
	CMake (1)
	CMake (2)
	git-junoenv
	junoenv (1)
	junoenv (2)
	Docker image
	Gitlab Runner
	Summary and plan
	Abstract

