
Lindsey Gray, Nick Smith (FNAL),
Doug Davis, Martin Durant (Anaconda),
Angus Hollands, Jim Pivarski (Princeton),
Yi-Mu Chen (UMD),
CHEP 2023 - Norfolk, Virginia
9 May 2023

Fine-Grained HEP Analysis Task Graph Optimization 
with Coffea and Dask

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask2

Impedance Mismatches

• ROOT File <-> Machine Learning (uproot is everywhere nowadays)

• Big data <-> PyROOT (python for-loops are slow)

• HEP Physicist <-> Industry (we are a subset of wider data science)

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask3

Scientific Python

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask4

• A package in the scientific python ecosystem
- $ pip install coffea

• A user interface for columnar analysis
- With missing pieces of the stack filled in
• A minimum viable product
- We are data analyzers too #dogfooding
• A really strong glue  

• Going strong for five years
- Many published analyses now

Coffea is

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask5

What is columnar analysis?

• Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

• Columnar analysis:
- Load relevant values for many events into contiguous arrays
- Evaluate several array programming expressions
• Implicit inner loops
• Plan analysis by composing data manipulations
- Store derived values

12

From K. Pedro

12

From K. Pedro

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

This talk:

6

Concrete example:

Columnar

cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.)

hist.fill(eta=events.Electron.eta[cut].flatten())

Event loop

void MyClass::Loop() {

 size_t nEvents;

 // load...

 for (Long64_t iEvent=0; iEvent<nEvents; iEvent++) {

 double MET_pt;

 int nElectron;

 double * Electron_pt;

 double * Electron_eta;

 // load...

 if (MET_pt > 100.) continue;

 for(size_t iEl=0; iEl<nElectron; ++iEl) {

 if (Electron_pt[iEl] > 30.) {

 hist->Fill(Electron_eta[iEl]);

 }

 }

 }

}

Delayed Columnar

“array” operations only describe what is to be done

cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.)

hist.fill(eta=events.Electron.eta[cut].flatten())

in order to render a result, we ask for it 
hist.compute()

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Dask

• Dask provides an interface for specifying/locating input data and then
describing manipulations on that data are organized into a task graph
- This task graph can then be executed on local compute or on a cluster
• Dask Array and Dask Dataframe deal well with rectangular data
- Provide a scalable interface to describe manipulations of data that may not fit into

system memory by mapping transformations onto partitions of the data that fit in memory

7

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

awkward array 2.0, dask_awkward, dask_histogram, and coffea

• Awkward array 2.0 features an improved and streamlined backend
- Only C and python, no C++ metadata handling
- Removal of ak.virtual delayed computations (to be replaced by dask_awkward)
• dask_awkward and dask_histogram bring delayed, distributed computation to

awkward array 2.0 based analyses and libraries
- Providing access to dask at all layers of analysis yields improved parallelism and better

factorization away from compute infrastructure
• Coffea (particularly nanoevents) was almost entirely based on ak.virtual

8

Coffea 0.7 Coffea 2023 (yes, we switched to CalVer)

(())awkward-array
hist
dask, parsl, etc.

dask_awkward( 
 awkward-array 
)
hist(dask_histogram)
dask, parsl, etc.

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Practicalities: Writing Code (1)

• Minimal boiler plate to enter delayed, out-of-core computing environment
• Nanoevents interface is the same as with awkward1
- Arrays from flat input file are organized into physics object concepts
- Only major difference is now when you want something computed you .compute() it
• cf. dask.persist() - no time in this talk, it is a whole can of worms, see extras / chat over coffee!

• Largely user needs to change “ak.action” to “dak.action”

9

dask_histogram + hist

local dask-distributed cluster (can omit, or extend to condor)

https://www.youtube.com/watch?v=McKSS_WjLwU

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Practicalities: Writing Code (2)

• Example: Query 8
- from ADL Benchmarks
• Compare to coffea 0.7
- No need for processor
• provide facade for backwards

compatibility
- Minimal boilerplate at analysis code
- Similar interface as coffea 0.7 but

with different baseline packages
- Use dask to dispatch compute
• Similarity of interface hides

massive implementation
difference
- H/T to dask_awkward authors for

helping to make that happen!
- Similarity of interface can help

encourage adoption in analyses

10

https://github.com/CoffeaTeam/coffea-benchmarks/blob/coffea2023/coffea-adl-benchmarks.ipynb

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Optimization Example: Q8

11

query  
beginning

query  
end

• Raw HEP analysis task graphs get large quickly
- Reasonably complete analysis, full systematics, is ~7000 layers as written by the user
- Q8 (top) here is 78 layers
- Each task-graph node could be executed on a different cluster resource (data transfer!)
• Dask provides standard optimizers to minimize node multiplicity
- This minimizes data transfer overhead and task-spawning overhead
- These optimizations are applied by default, yielding 2 layers for Q8
- Reasonably complete analysis is 234 layers post-optimization (ops fuse to hist filling)

query  
beginning

query  
end

dask.optimize(q8_hist)

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Practicalities: Writing Code (3)

• Systematics are one of the most critical aspects of
HEP analysis development
- Without systematics we cannot do our science
- Performing critical tasks in code should be clear and

intuitive
• In coffea 2023, distributed, parallel systematics

loops are written as loops over systematic variations
- Successive dask_histogram fill calls can be distributed

across nodes and resulting sub-histograms aggregated

12

Shortened example of
systematics task
graph from code
below

dask-wrapped correctionlib

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Benchmark Results comparing to coffea 0.7 / ak1

• New benchmarks using whole-node at FNAL Elastic Analysis Facility (EAF)
- Confirm no performance degradation compared to coffea 0.7 (further improvement coming)
- “Setup time” dominated by spinning up full dask worker nodes (subtract off benchmark)
• Graph and column optimization still included in “Coffea 2023 (-setup)”
- Column optimization runs mock task graph in local single thread

13

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Further Thoughts to Consider

• dask_awkward fundamentally changes how we can describe analysis
• dask_awkward-based analyses, via dask task graphs, are rendered into a

general, complete, declarative analysis description language (ADL)
- It looks curiously reminiscent of lisp, but no one would want to write by hand
- Luckily, using dask writes it for us so we can reap the advantages
• This means we have a preservable, extensible, and generalized description

of HEP analysis code that we can overlay on arbitrary compute resources
- “achievement unlocked”
• dask_awkward can robustly predict data requirements without full execution
- Using only file metadata, without altering user code (aside from initial adoption)
- This alone radically changes our ability to optimize compute systems
- Named data networks, interfaces with network transfer schedulers, can be hidden from

users of analysis facilities - enormous potential for system-level optimization
• dask_awkward can make skims in the process of the complete data analysis
- See extras, skimming + dask.persist() stand to wildly alter analysis data lifecycles and

multi-user interaction
• Multiple task scheduling projects are moving to dask task graphs (portability!)

14

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Conclusions and Next Steps

• coffea is in its release candidate phase for coffea 2023
- full migration to using awkward 2.0 and dask for delayed, out-of-core computation
• realized by using dask_awkward and dask_histogram
• no major performance degradation seen so far, with improvements in the pipeline in awkward
- we also plan to include more user analysis tools (see extras)
• wrappers for machine learning inference as dask tasks (including Nvidia triton)
• automatic cutflow and N-1 plot generation as an extension to PackedSelection
- aim for a complete, robust release this summer or early fall
• pip install --pre coffea --upgrade if you want to try it out now! (works on arm too)

• This update represents the culmination of ~4 years of R&D, in addition to
maintaining successful deployment, and supporting analyses
- The changes as a result of this research set scientific-python based analysis on a

course for achieving extreme performance at scale in the busy distributed system of
HEP production and analysis computing

• Congratulations to everyone involved in here - let’s make some plots :-)

15

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

Extras

16

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

dask.persist (checkpointing)

• Spawn background processing whose output can be referenced as a new
array in the distributed cluster memory
• With local memory cache (given enough memory) can explore / iterate on

data extremely quickly
• Resilient through node recycling (in a single dask cluster)
- Perpetual dask clusters are not an anti-pattern

17

returns immediately, processing runs in background

Further calls and
manipulations
reference to-be
persisted data

riffing on ADL Q8:

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

dak.to_parquet (skimming)

• Then you hists, _ = dask.compute(histograms, skim)
• In specified directory you get a parquet dataset which you can start further

analysis from or share with collaborators
- ROOT output will happen in time, parquet for skims is functionally equivalent
• Combined with dask.persist allows interestingly fine-grained control of

data lifecycle in analysis that we don’t know best practices for :-)

18

dask handle for delayed running of skim

Further calls run
stepwise as
normal. Skim
runs in parallel.

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

more user analysis tools: cutflows and N-1 histograms

• Work by Iason Krommydas (Rice) to automate essential early-analysis data
exploration
- N-1 plots and cutflow tables rendered as dask task graphs or eager arrays from book-

keeping class “PackedSelection”
- Expressive, easy-to-use extension to existing, adopted tools within coffea
• Solves an often requested, and otherwise home-grown, feature for coffea

19

N-1 plots:

cutflows:

https://github.com/iasonkrom

9 May 2023 L. Gray | HEP Analysis Task Graphs with Coffea + Dask

more user analysis tools: common machine learning interface

• Work by Yi-Mu Chen (UMD) to connect ML inference to dask-based
workflows
- Automatic upload of ML model (if necessary) to dask cluster, fetch to nodes evaluating
- One entry point, with some configuration for triton, xgboost, PyTorch, et al.
• Aim to provide easy migration of coffea+ML workflows to coffea 2023

20

nvidia triton PyTorch xgboost

https://github.com/yimuchen

