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❖ Modern HEP workflows are increasingly scaled and complex
➢ Running on big computing farms or world-wide grid 

❖ HPC facilities may be employed to help to meet the growing data processing needs of 
these workflows and to reduce the time required to make new scientific insights 

❖ Ability to instrument the I/O behavior of the HEP workflows could be critical to 
characterize and understand their I/O patterns and underlying bottlenecks to be able to 
meet the performance expectations of the HPC systems

HEP workflow
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Albrecht et al., 2019

https://www.frontiersin.org/articles/10.3389/fdata.2021.661501/full#B1


Darshan
❖ Darshan is a lightweight I/O characterization tool that captures concise views 

and entire traces (DXT) of applications’ I/O behavior

❖ Widely available – Deployed (and commonly enabled by default) at many 
HPC facilities
➢ LCFs, NERSC, etc. and CVMFS

❖ Has become a popular tool for HPC users to better understand their I/O 
workloads
➢ Easy to use – no code changes required
➢ Modular – straightforward to add new instrumentation sources

3

https://www.mcs.anl.gov/research/projects/darshan/

https://www.mcs.anl.gov/research/projects/darshan/


Darshan enhancements for HEP use case
❖ Originally designed specifically for message passing interface (MPI) applications, but 

recently we have modified Darshan to also work in non-MPI contexts
➢ HEP workflows are traditionally not been based on MPI
➢ In recent Darshan versions (3.2+), any dynamically-linked executable can be instrumented

❖ Ability to instrument the forked processes
➢ AthenaMP (multi-process offline software of ATLAS) creates parallel workers which are forked 

from the main process
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults



Case study: ATLAS workflow
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Broadwell on LCRC@ANL 
GPFS

50 events, 8 threads
7267 seconds

~90 MB/s

3600 events, 8 processes
~3800/1908 seconds

~53.1/326.8 MB/s

Worker proc: ~1300MB ~0.32MB
Write proc:   ~3.13MB ~485MB~314MB ~380MB

AthenaMP+SharedWriter
❖ Utilizing the Copy on Write principal to 

share memory across workers
❖ A shared writer executed alongside the 

other workers which retrieves the output 
data objects from the workers and merges 
them on the fly

AthenaMT (multi-thread Athena)
❖ Gaudi task scheduler maps 

tasks to kernel threads
❖ Shared single pool of heap 

memory



Case study: ATLAS workflow
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Broadwell on LCRC@ANL 
GPFS
SDCC@BNL
Lustre

50 events, 8 threads
7267 seconds

~90 MB/s

Worker proc: ~1300MB ~0.32MB
Write proc:   ~3.13MB ~485MB~314MB ~380MB

405K events, serial
1319 seconds

~84.5 MB/s

~6709 MB ~106MB

xAOD analysis
First look on 

analysis stage

3600 events, 8 processes
~3800/1908 seconds

~53.1/326.8 MB/s



Case study: CMS workflow
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680 seconds
~49 MB/s

~188MB ~6831MB

Haswell on Cori @Nersc
SSD + Lustre

1648 seconds
~266.6 MB/s

383 seconds
~321.4 MB/s

1019 seconds
~128.9 MB/s

~5110MB ~1857MB~0.007MB ~193MB

~431MB ~25MB

100 events, 16 threads



Case study: I/O operations
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Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL 
GPFS

❖ Equal number of writes/seeks
➢ Generation & Simulation & 

Reconstruction & SharedWriter 
process in Filtering stage at ATLAS 
(marked)

I/O Operation Counts

❖ Equal sequential & consecutive 
I/O
➢ Sequential – next access came 

somewhere after the last one in 
the file

➢ Consecutive – next access starts 
with the byte immediately 
following the last access



Case study: I/O operations
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Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL 
GPFS

❖ Seeks > reads
➢ Filtering stage (worker process at 

ATLAS)

I/O Operation Counts

❖ Sequential > consecutive I/O
➢ Sequential – next access came 

somewhere after the last one in the 
file

➢ Consecutive – next access starts 
with the byte immediately following 
the last access



Case study: Access size

10

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL 
GPFS

Small reads/writes at O(1KB)
● All stages (marked) except ATLAS Analysis which is at 

O(100KB)
● Related to ROOT TTreeCache vector I/O support on certain 

FSes
● Potential bottleneck
● ROOT has a data sieving concept (overread) that might be 

taken advantage of



Next steps for Darshan
❖ Instrumentation of Intel DAOS I/O libraries

➢ Upcoming exascale system at Argonne, Aurora, will feature a new-to-HPC 
object-based storage system

➢ Appealing performance characteristics for I/O middleware (e.g., HDF5 and ROOT) 
that can effectively leverage storage model

➢ File-based module complete, native object-based module underway

❖ Darshan analysis tools for workflows
➢ Refactor PyDarshan code to more easily allow aggregation and visualization of 

Darshan data across multiple logs
■ Multiple logs generated by the steps of an HEP workflow
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Conclusion
❖ Darshan is a tool developed that could help to improve HEP workflows

➢ Characterize I/O activities of various workflow stages at scale
■ Amount of data movement in various phases
■ Patterns and sizes of access
■ Guide performance optimization in response to mismatch of behavior with HPC best practice

➢ I/O behavior are mostly as expected for ATLAS and CMS workflow
➢ Dune workflow has also been looked into

❖ Guide the further tuning of the I/O patterns to better inform storage capabilities 
requirements at facilities
➢ ROOT
➢ HDF5 (DUNE will write Raw data in HDF5)

❖ Uncover the I/O bottlenecks in current workflows when deployed at scale
➢ CPU & GPU

❖ Provide recommendations for data format and access patterns for future HEP 
workloads
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https://www.lcrc.anl.gov/


Backups 

14



Darshan runtime library
❖ Detailed runtime library configuration

➢ HEP Python frameworks access tons of files, many irrelevant for I/O analysis (shared libraries, 
headers, compiled Python byte code, etc.)

➢ Darshan users need more control over memory limits and instrumentation scope
➢ Comprehensive runtime library configuration integrated into Darshan

■ Total and per-module memory limits
■ File name patterns to ignore
■ Application name patterns to ignore
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# allocate 4096 file records for POSIX and MPI-IO modules
# (darshan only allocates 1024 per-module by default)
MAX_RECORDS     5000      POSIX

# the '*' specifier can be used to apply settings for all modules
# in this case, we want all modules to ignore record names
# prefixed with "/home" (i.e., stored in our home directory),
# with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE    .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software   *
NAME_INCLUDE     .pool.root.*   *

# bump up Darshan's default memory usage to 8 MiB
MODMEM  8

# avoid generating logs for git and ls binaries
APP_EXCLUDE     git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld



ATLAS offline software – Athena
Serial Athena                                                         Run1

Multi-Process                                                               Run2 – 3
– AthenaMP+standalone merging

• Independent parallel workers are forked from main process with shared memory allocation
• Each worker produces its own outputs and merged later via a post-processing merge process

– AthenaMP+SharedWriter
• A shared writer process does all the output writes
• Reduce time on single thread merging process

– AthenaMP+sharedWriter (parallelCompression) 
• Using parallel compression to reduce the time increment when moving to higher No. of process

Multi-thread                                              Run3
– AthenaMT

• Gaudi task scheduler maps task to kernel threads
• Shared single pool of heap memory
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults



CMS workflow – different hardware
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Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Local skylake CPU
HDD
200 events, 16 threads

~10287MB ~4458MB

4104 seconds
~685 MB/s

~5110MB ~1856MB

1019 seconds
~128.9 MB/s


