
Suggested line of text (optional):

WE START WITH YES.

Darshan for HEP
applications

erhtjhtyhy

Douglas Benjamin2, Patrick Gartung3, Kenneth Herner3,
Shane Snyder1, Rui Wang1, Zhihua Dong2

1. Argonne National Laboratory
2. Brookhaven National Laboratory
3. Fermi National Accelerator Laboratory

Thursday, 11 May, 2023

HEP-CCE

❖ Modern HEP workflows are increasingly scaled and complex
➢ Running on big computing farms or world-wide grid

❖ HPC facilities may be employed to help to meet the growing data processing needs of
these workflows and to reduce the time required to make new scientific insights

❖ Ability to instrument the I/O behavior of the HEP workflows could be critical to
characterize and understand their I/O patterns and underlying bottlenecks to be able to
meet the performance expectations of the HPC systems

HEP workflow

2

Albrecht et al., 2019

https://www.frontiersin.org/articles/10.3389/fdata.2021.661501/full#B1

Darshan
❖ Darshan is a lightweight I/O characterization tool that captures concise views

and entire traces (DXT) of applications’ I/O behavior

❖ Widely available – Deployed (and commonly enabled by default) at many
HPC facilities
➢ LCFs, NERSC, etc. and CVMFS

❖ Has become a popular tool for HPC users to better understand their I/O
workloads
➢ Easy to use – no code changes required
➢ Modular – straightforward to add new instrumentation sources

3

https://www.mcs.anl.gov/research/projects/darshan/

https://www.mcs.anl.gov/research/projects/darshan/

Darshan enhancements for HEP use case
❖ Originally designed specifically for message passing interface (MPI) applications, but

recently we have modified Darshan to also work in non-MPI contexts
➢ HEP workflows are traditionally not been based on MPI
➢ In recent Darshan versions (3.2+), any dynamically-linked executable can be instrumented

❖ Ability to instrument the forked processes
➢ AthenaMP (multi-process offline software of ATLAS) creates parallel workers which are forked

from the main process

4

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Case study: ATLAS workflow

5

Broadwell on LCRC@ANL
GPFS

50 events, 8 threads
7267 seconds

~90 MB/s

3600 events, 8 processes
~3800/1908 seconds

~53.1/326.8 MB/s

Worker proc: ~1300MB ~0.32MB
Write proc: ~3.13MB ~485MB~314MB ~380MB

AthenaMP+SharedWriter
❖ Utilizing the Copy on Write principal to

share memory across workers
❖ A shared writer executed alongside the

other workers which retrieves the output
data objects from the workers and merges
them on the fly

AthenaMT (multi-thread Athena)
❖ Gaudi task scheduler maps

tasks to kernel threads
❖ Shared single pool of heap

memory

Case study: ATLAS workflow

6

Broadwell on LCRC@ANL
GPFS
SDCC@BNL
Lustre

50 events, 8 threads
7267 seconds

~90 MB/s

Worker proc: ~1300MB ~0.32MB
Write proc: ~3.13MB ~485MB~314MB ~380MB

405K events, serial
1319 seconds

~84.5 MB/s

~6709 MB ~106MB

xAOD analysis
First look on

analysis stage

3600 events, 8 processes
~3800/1908 seconds

~53.1/326.8 MB/s

Case study: CMS workflow

7

680 seconds
~49 MB/s

~188MB ~6831MB

Haswell on Cori @Nersc
SSD + Lustre

1648 seconds
~266.6 MB/s

383 seconds
~321.4 MB/s

1019 seconds
~128.9 MB/s

~5110MB ~1857MB~0.007MB ~193MB

~431MB ~25MB

100 events, 16 threads

Case study: I/O operations

8

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL
GPFS

❖ Equal number of writes/seeks
➢ Generation & Simulation &

Reconstruction & SharedWriter
process in Filtering stage at ATLAS
(marked)

I/O Operation Counts

❖ Equal sequential & consecutive
I/O
➢ Sequential – next access came

somewhere after the last one in
the file

➢ Consecutive – next access starts
with the byte immediately
following the last access

Case study: I/O operations

9

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL
GPFS

❖ Seeks > reads
➢ Filtering stage (worker process at

ATLAS)

I/O Operation Counts

❖ Sequential > consecutive I/O
➢ Sequential – next access came

somewhere after the last one in the
file

➢ Consecutive – next access starts
with the byte immediately following
the last access

Case study: Access size

10

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Broadwell on LCRC@ANL
GPFS

Small reads/writes at O(1KB)
● All stages (marked) except ATLAS Analysis which is at

O(100KB)
● Related to ROOT TTreeCache vector I/O support on certain

FSes
● Potential bottleneck
● ROOT has a data sieving concept (overread) that might be

taken advantage of

Next steps for Darshan
❖ Instrumentation of Intel DAOS I/O libraries

➢ Upcoming exascale system at Argonne, Aurora, will feature a new-to-HPC
object-based storage system

➢ Appealing performance characteristics for I/O middleware (e.g., HDF5 and ROOT)
that can effectively leverage storage model

➢ File-based module complete, native object-based module underway

❖ Darshan analysis tools for workflows
➢ Refactor PyDarshan code to more easily allow aggregation and visualization of

Darshan data across multiple logs
■ Multiple logs generated by the steps of an HEP workflow

11

Conclusion
❖ Darshan is a tool developed that could help to improve HEP workflows

➢ Characterize I/O activities of various workflow stages at scale
■ Amount of data movement in various phases
■ Patterns and sizes of access
■ Guide performance optimization in response to mismatch of behavior with HPC best practice

➢ I/O behavior are mostly as expected for ATLAS and CMS workflow
➢ Dune workflow has also been looked into

❖ Guide the further tuning of the I/O patterns to better inform storage capabilities
requirements at facilities
➢ ROOT
➢ HDF5 (DUNE will write Raw data in HDF5)

❖ Uncover the I/O bottlenecks in current workflows when deployed at scale
➢ CPU & GPU

❖ Provide recommendations for data format and access patterns for future HEP
workloads

12

Acknowledgments
❖ This work was supported by the U.S. Department of Energy, Office of Science, Office of High

Energy Physics, High Energy Physics Center for Computational Excellence (HEP-CCE).

❖ This work is in part supported by the Director, Office of Advanced Scientific Computing
Research, Office of Science, of the U.S. Department of Energy under Contract No.
DE-AC02-06CH11357; in part supported by the Exascale Computing Project (17-SC-20-SC),
a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration, responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the nation’s exascale computing
imperative; and in part supported by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program.

❖ This research used resources at Argonne Leadership Computing Facility (ALCF), Argonne
Laboratory Computing Resource Center (LCRC), NERSC and BNL Scientific Data and
Computing Center (SDCC).

13

https://www.lcrc.anl.gov/

Backups

14

Darshan runtime library
❖ Detailed runtime library configuration

➢ HEP Python frameworks access tons of files, many irrelevant for I/O analysis (shared libraries,
headers, compiled Python byte code, etc.)

➢ Darshan users need more control over memory limits and instrumentation scope
➢ Comprehensive runtime library configuration integrated into Darshan

■ Total and per-module memory limits
■ File name patterns to ignore
■ Application name patterns to ignore

15

allocate 4096 file records for POSIX and MPI-IO modules
(darshan only allocates 1024 per-module by default)
MAX_RECORDS 5000 POSIX

the '*' specifier can be used to apply settings for all modules
in this case, we want all modules to ignore record names
prefixed with "/home" (i.e., stored in our home directory),
with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software *
NAME_INCLUDE .pool.root.* *

bump up Darshan's default memory usage to 8 MiB
MODMEM 8

avoid generating logs for git and ls binaries
APP_EXCLUDE git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld

ATLAS offline software – Athena
Serial Athena Run1

Multi-Process Run2 – 3
– AthenaMP+standalone merging

• Independent parallel workers are forked from main process with shared memory allocation
• Each worker produces its own outputs and merged later via a post-processing merge process

– AthenaMP+SharedWriter
• A shared writer process does all the output writes
• Reduce time on single thread merging process

– AthenaMP+sharedWriter (parallelCompression)
• Using parallel compression to reduce the time increment when moving to higher No. of process

Multi-thread Run3
– AthenaMT

• Gaudi task scheduler maps task to kernel threads
• Shared single pool of heap memory

16
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

CMS workflow – different hardware

17

Haswell on Cori @Nersc
SSD + Lustre
100 events, 16 threads

Local skylake CPU
HDD
200 events, 16 threads

~10287MB ~4458MB

4104 seconds
~685 MB/s

~5110MB ~1856MB

1019 seconds
~128.9 MB/s

