
Philippe Gras (IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France), Pere Mato (CERN,
Switzerland), Jerry Ling (Harvard University), Oliver Schulz (TU Dormunt, Germany), Uwe Hernandez
Acosta (CASUS, Görlitz, Germany), Graeme A Stewart (CERN, Switzerland)

Is Julia ready to be adopted by HEP?
26th International Conference on Computing in High Energy & Nuclear Physics (CHEP2023)

Tamas Gal – Erlangen Centre for Astroparticle Physics

https://indico.jlab.org/event/459/contributions/11521/

https://indico.jlab.org/event/459/contributions/11521/

My first encounter with the HEP software world
as a graduate student and research assistant in 2012

• Analysing and visualising bioluminescence data recorded by 
the ANTARES neutrino detector

• Using a ROOT-based framework (which was btw. a nightmare to 
install on my MacBook running Mac OS X 10.6)

• Why ROOT? Because people who established ANTARES were familiar 
with ROOT and humans crave convenience

• Even with more than 15 years of (self-taught) coding experience in different programming languages: it was a real challenge

• Lot of work spent until the first results were presentable (kind of embarrassing how long it took to create some simple scatter
plots)

• Most of my fellow students had a much worse starting situation, having almost no coding experience at all

• Python started to gain some momentum in science; I was already using it for a decade as a shell scripting replacement.

• Decided to work on (high-level) Python tools to reduce boilerplates, make things more accessible and exploit the benefits of
interactiveness to lower the entry barrier especially for new-comers

Source: "Untersuchung von Biolumineszenz im ANTARES Neutrinoteleskop", Maximilian Schandri

2

The years after...
aka the "The Era of Python"

• I joined KM3NeT (the ANTARES neutrino detector's successor)
and pushed hard for Python

• Lot's of library code and packages written to do both low-level
calculations (e.g. real-time detector time calibrations using K40
coincidences) and high-level analysis ("big-data", machine-
learning, HDF5, ...)

• Convinced many people that Python is able to compete with
"compiled rivals" (mainly C++/ROOT) by using the right tools to
overcome its weak spots regarding performance (GIL, duck
typing, extremely slow loops...)

• Virtual environments and the Python packaging system allowed
to increase the reusability of code and reproducibility of analyses

• Still, we ended up in a technological Mikado

3

The Reality
• Crafting high-performant code in the "Python" programming language is

demanding

• It requires a profound understanding of

• computer architecture

• languages interdependencies

• the art of producing reusable code libraries

• Many "solution attempts" exists to tackle the "two-language problem"

• The maintenance overhead rapidly escalates with each additional technology,
which are mandatory

• Python is often merely utilised as the high-level layer, restricting access to
low-level modifications

• Loops in Python are a disaster (as we all know), yet they remain a familiar
paradigm for many programmers

• The solutions require to make lots of compromises cffi

The "two-language problem"

4

We need stuff like this to be able

to enjoy Python's strengths...

Reasons to switch languages

ASSEMBLY
Readability and
hardware independence.

Complex and nested
data structures

A simplified storyline in HEP
1940 1950 1960 1970 1980 1990 2000 2010 2020

Python
C++

Fortran

Assembly

Taken from "Jagged, ragged, awkward arrays" by Jim Pivarski

(Strange Loop Conference 2019)

5

where I encountered HEP

Interactivity,
ease of use, packaging

Language usage development in the past 13 years
Based on counting non-fork GitHub repositories created by people who forked a specific software.

• Python peaked in 2020/2021

• Julia is slowly emerging

• "HEP" seems to follow the
"data scientist" trend

• Turn-over point of Rust vs.
C++ on the horizon for "data
scientists"

cmssw users
("HEP")

numpy users 
("data scientist")

6

Which language would we have picked in 2013 if we had
to choose from today's programming languages?

hardeasy

slow

fast

Most loved languages (top 6 shown) https://survey.stackoverflow.co/2022

We think Julia is a suitable candidate.

• High-level ("easy" and interactive) language without penalty on
performance

• Massive code reuse and sharing due to the multiple-dispatch
design

• Interface with legacy code written in different languages

• Well-designed packaging/distribution system

• Parallel and distributed computing are core features of Julia

• Ability to write GPU kernels in native Julia

7

https://survey.stackoverflow.co/2022

8

Microbenchmarks, data taken from https://julialang.org/benchmarks/

Julia's native speed (compared to C and Python)

• Code "naively" written in Julia is often close to the
peak performance

• It's a big deal since physics students do not have CS
education and often approach problems "naively"

• Such a code is (according to my experience) often
1-2 orders of magnitude slower than it should be

• memory issues all over the place (vectorised
operations with unnecessary temporary
allocations)

• bad scaling due to "whole-meal" programming
style

• "Julia: A language that walks like Python, runs like
C" -- K. S. Kuppusamy

Microbenchmarks

https://julialang.org/benchmarks/

Accessing data formats used in HEP
The entry point...

9

Arrow.jl

UpROOT.jl

• Being able to read (write) data is
essential

• The most popular data formats used
in HEP are supported with native
Julia packages*

• Addition formats can be introduced to
HEP through Julia

LHE.jlLes Houches Event
File Format

LCIO.jlLCIO

* reading of ROOT files has some limitations 
writing ROOT relies on the Python package uproot

High-level and interactive coding
Without penalty on performance

• Interactive scientific computing for rapid prototyping has
a long history in HEP, introduced by PAW (1986) at CERN
and later in ROOT (CINT 1995, Cling 2013)

• Python among other languages popularised the REPL in
other scientific fields

• Julia offers the same interactivity without penalty on
performance

• Type inference allows generic programming and yet type
safety and optimised machine code

• Jupyter notebook support (btw. Ju stands for Julia...)

10

Code reusability and extensibility
"The Expression Problem"

• The ability to easily define new types to which existing operations
apply

• Easy in object-oriented languages / Hard in functional
languages

• The ability to easily define new operations which apply to existing
types

• Easy in functional languages / Hard in object-oriented languages

• Being able to do both easily is "The Expression Problem"

An elegant solution is multiple-dispatch – the main paradigm of the
Julia language

• "Generic programming" and JIT type inference allows mixing code
from different Julia packages

• Add new methods to existing generic functions for new types

• Add new methods to new generic functions for existing types

11

JuliaCon 2019 | The Unreasonable Effectiveness of Multiple Dispatch | Stefan Karpinski
https://www.youtube.com/live/kc9HwsxE1OY

These two packages don't know about each other!

Interfacing legacy code

• Many high-quality, mature libraries for numerical
computing written in C and Fortran were developed and
optimised over the past decades

• Julia supports native call (without any glue code) into C
and Fortran libraries (via the built-in ccall() function)

• C++ wrapping available via external packages like
CxxWrap.jl

• Zero-overhead Python wrapping (PyCall.jl)

• An honorable mention for a fully wrapped HEP software

• Geant4.jl (fully wrapped using CxxWrap.jl)

12

Julia's packaging and distribution system
Reproducible environments, private package registries

• Reproducible environments with exact versions of all dependencies is a
built-in feature in Julia

• Private package registries can be utilised to distribute unpublished
packages, seamless integration into the package dependency solver

• Distribution of pre-built binaries of external dependencies (e.g. HDF5lib,
libdeflate, ...) for a large combinatorics of OS, architectures, compiler
features, etc.

13

Parallel, Distributed and GPU Computing
"Built-in" or "built for" ;)

• Loops can easily be parallelised by adding a keyword
(macro-/meta- programming)

• Loop optimization with processor-level parallelisation
(SIMD). Can be fine-tuned with third-party packages
like LoopVectorization.jl. 
Related talk here at CHEP 2023 from Graeme Stuart 
https://indico.jlab.org/event/459/contributions/11540

• An impressive example from KernelAbstractions.jl which
allows Julia code to be passed as a kernel function to
GPUs:

• Distributed (built-in): execute code asynchronously in
multiple processes and/or multiple machines (like MPI)

14

https://indico.jlab.org/event/459/contributions/11540

Summary

• We think that the two-language problem needs more attention and a fundamentally different
approach than creating more and more Python extensions and libraries

• Julia is an excellent language for scientific computing with high potential for HEP

• HEP specific needs are very well covered by Julia

• Code sharing and extending foreign packages are a no-brainer, thanks to the package
distribution system and the multiple dispatch design

• Distributed and parallel computing as first-class citizens in Julia

• Upcoming paper: 
Potential of the Julia language for High Energy Physics computing

• Join the JuliaHEP GitHub organisation: https://github.com/JuliaHEP

15

https://github.com/JuliaHEP

