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My first encounter with the HEP software world
as a graduate student and research assistant in 2012

• Analysing and visualising bioluminescence data recorded by 
the ANTARES neutrino detector


• Using a ROOT-based framework (which was btw. a nightmare to 
install on my MacBook running Mac OS X 10.6)


• Why ROOT? Because people who established ANTARES were familiar 
with ROOT and humans crave convenience 

• Even with more than 15 years of (self-taught) coding experience in different programming languages: it was a real challenge 

• Lot of work spent until the first results were presentable (kind of embarrassing how long it took to create some simple scatter 
plots)


• Most of my fellow students had a much worse starting situation, having almost no coding experience at all


• Python started to gain some momentum in science; I was already using it for a decade as a shell scripting replacement.


• Decided to work on (high-level) Python tools to reduce boilerplates, make things more accessible and exploit the benefits of 
interactiveness to lower the entry barrier especially for new-comers

Source: "Untersuchung von Biolumineszenz im ANTARES Neutrinoteleskop", Maximilian Schandri
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The years after...
aka the "The Era of Python"

• I joined KM3NeT (the ANTARES neutrino detector's successor) 
and pushed hard for Python


• Lot's of library code and packages written to do both low-level 
calculations (e.g. real-time detector time calibrations using K40 
coincidences) and high-level analysis ("big-data", machine-
learning, HDF5, ...)


• Convinced many people that Python is able to compete with 
"compiled rivals" (mainly C++/ROOT) by using the right tools to 
overcome its weak spots regarding performance (GIL, duck 
typing, extremely slow loops...)


• Virtual environments and the Python packaging system allowed 
to increase the reusability of code and reproducibility of analyses


• Still, we ended up in a technological Mikado
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The Reality
• Crafting high-performant code in the "Python" programming language is 

demanding


• It requires a profound understanding of


• computer architecture 

• languages interdependencies


• the art of producing reusable code libraries


• Many "solution attempts" exists to tackle the "two-language problem"


• The maintenance overhead rapidly escalates with each additional technology, 
which are mandatory


• Python is often merely utilised as the high-level layer, restricting access to 
low-level modifications


• Loops in Python are a disaster (as we all know), yet they remain a familiar 
paradigm for many programmers 

• The solutions require to make lots of compromises cffi

The "two-language problem"
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We need stuff like this to be able 

to enjoy Python's strengths...



Reasons to switch languages

ASSEMBLY
Readability and 
hardware independence.

Complex and nested 
data structures

A simplified storyline in HEP
1940 1950 1960 1970 1980 1990 2000 2010 2020

Python
C++

Fortran

Assembly

Taken from "Jagged, ragged, awkward arrays" by Jim Pivarski

(Strange Loop Conference 2019)
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where I encountered HEP

Interactivity, 
ease of use, packaging



Language usage development in the past 13 years
Based on counting non-fork GitHub repositories created by people who forked a specific software.

• Python peaked in 2020/2021


• Julia is slowly emerging


• "HEP" seems to follow the 
"data scientist" trend


• Turn-over point of Rust vs. 
C++ on the horizon for "data 
scientists"

cmssw  users 
("HEP")

numpy  users 
("data scientist")
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Which language would we have picked in 2013 if we had 
to choose from today's programming languages?

hardeasy

slow

fast

Most loved languages (top 6 shown) https://survey.stackoverflow.co/2022

We think Julia is a suitable candidate.


• High-level ("easy" and interactive) language without penalty on 
performance 

• Massive code reuse and sharing due to the multiple-dispatch 
design


• Interface with legacy code written in different languages


• Well-designed packaging/distribution system 

• Parallel and distributed computing are core features of Julia


• Ability to write GPU kernels in native Julia
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Microbenchmarks, data taken from https://julialang.org/benchmarks/

Julia's native speed (compared to C and Python)

• Code "naively" written in Julia is often close to the 
peak performance


• It's a big deal since physics students do not have CS 
education and often approach problems "naively" 

• Such a code is (according to my experience) often 
1-2 orders of magnitude slower than it should be


• memory issues all over the place (vectorised 
operations with unnecessary temporary 
allocations)


• bad scaling due to "whole-meal" programming 
style


• "Julia: A language that walks like Python, runs like 
C" -- K. S. Kuppusamy

Microbenchmarks

https://julialang.org/benchmarks/


Accessing data formats used in HEP
The entry point...
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Arrow.jl

UpROOT.jl

• Being able to read (write) data is 
essential


• The most popular data formats used 
in HEP are supported with native 
Julia packages*


• Addition formats can be introduced to 
HEP through Julia

LHE.jlLes Houches Event 
File Format

LCIO.jlLCIO

* reading of ROOT files has some limitations 
writing ROOT relies on the Python package uproot



High-level and interactive coding
Without penalty on performance

• Interactive scientific computing for rapid prototyping has 
a long history in HEP, introduced by PAW (1986) at CERN 
and later in ROOT (CINT 1995, Cling 2013)


• Python among other languages popularised the REPL in 
other scientific fields


• Julia offers the same interactivity without penalty on 
performance 

• Type inference allows generic programming and yet type 
safety and optimised machine code


• Jupyter notebook support (btw. Ju stands for Julia...)
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Code reusability and extensibility
"The Expression Problem"

• The ability to easily define new types to which existing operations 
apply 

• Easy in object-oriented languages / Hard in functional 
languages 

• The ability to easily define new operations which apply to existing 
types 

• Easy in functional languages / Hard in object-oriented languages


• Being able to do both easily is "The Expression Problem" 

An elegant solution is multiple-dispatch – the main paradigm of the 
Julia language 

• "Generic programming" and JIT type inference allows mixing code 
from different Julia packages


• Add new methods to existing generic functions for new types


• Add new methods to new generic functions for existing types
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JuliaCon 2019 | The Unreasonable Effectiveness of Multiple Dispatch | Stefan Karpinski
https://www.youtube.com/live/kc9HwsxE1OY

These two packages don't know about each other!



Interfacing legacy code

• Many high-quality, mature libraries for numerical 
computing written in C and Fortran were developed and 
optimised over the past decades


• Julia supports native call (without any glue code) into C 
and Fortran libraries (via the built-in ccall() function)


• C++ wrapping available via external packages like 
CxxWrap.jl


• Zero-overhead Python wrapping (PyCall.jl)


• An honorable mention for a fully wrapped HEP software


• Geant4.jl (fully wrapped using CxxWrap.jl)
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Julia's packaging and distribution system
Reproducible environments, private package registries

• Reproducible environments with exact versions of all dependencies is a 
built-in feature in Julia 

• Private package registries can be utilised to distribute unpublished 
packages, seamless integration into the package dependency solver


• Distribution of pre-built binaries of external dependencies (e.g. HDF5lib, 
libdeflate, ...) for a large combinatorics of OS, architectures, compiler 
features, etc.
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Parallel, Distributed and GPU Computing
"Built-in" or "built for" ; )

• Loops can easily be parallelised by adding a keyword 
(macro-/meta- programming)


• Loop optimization with processor-level parallelisation 
(SIMD). Can be fine-tuned with third-party packages 
like LoopVectorization.jl. 
Related talk here at CHEP 2023 from Graeme Stuart 
https://indico.jlab.org/event/459/contributions/11540


• An impressive example from KernelAbstractions.jl which 
allows Julia code to be passed as a kernel function to 
GPUs:


• Distributed (built-in): execute code asynchronously in 
multiple processes and/or multiple machines (like MPI) 
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https://indico.jlab.org/event/459/contributions/11540


Summary

• We think that the two-language problem needs more attention and a fundamentally different 
approach than creating more and more Python extensions and libraries


• Julia is an excellent language for scientific computing with high potential for HEP 

• HEP specific needs are very well covered by Julia


• Code sharing and extending foreign packages are a no-brainer, thanks to the package 
distribution system and the multiple dispatch design


• Distributed and parallel computing as first-class citizens in Julia 

• Upcoming paper: 
Potential of the Julia language for High Energy Physics computing 

• Join the JuliaHEP GitHub organisation: https://github.com/JuliaHEP
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https://github.com/JuliaHEP

