Job splitting on the ALICE grid, introducing the new job optimizer for the ALICE grid middleware.

Haakon André Reme-Ness (Western Norway University of Applied Sciences) on behalf of the ALICE collaboration.

Introduction

The ALICE experiment at the CERN LHC has undergone a significant upgrade of the detectors, readout, and software prior to Run 3 (2022 onward). Following the upgrades, ALICE will collect, reconstruct and analyze approximately 10x more events than in the previous data-taking period. In preparation for the increased requirements for the distributed computing system, ALICE has developed and deployed a new Grid middleware JAliEn, which adopted the functionality and updates accumulated in the past 15 years. It makes use of new software tools and modern development practices. A critical part of the payload management of JAliEn is the so-called Job Optimizer. Based on a general job submitted by a user the Job Optimizer prepares a specific set of sub-jobs compatible with the site resources, in particular with the data location, software requirements, quotas, and priorities. The newly developed Job Optimizer is presented in this poster.

Submitting a job to the grid

- User submits a job based on a JDL (Job Description) Language) file.
- Evaluate and validate the JDL.
- Prepare requirements for job, such as ensuring required packages are available on sites executing the job.

MySU

- Insert original job into job queue .
- Not ready to be picked up by a site yet.
- If available, try to perform job split.
- If not, the job gets picked up by the Job Optimizer later.

Job Optimizer service

- Continuously running with a short cooldown period.
- Picks up job ready to be split from the job queue, based on how old the job is.
 - Submit job id to a thread-pool that starts the job splitting.
 - Size of the thread-pool determines how many jobs a machine can split at once and is a configurable parameter for central machines
 - to assists with scaling.

Database Optimization

- Optimization towards database is mainly introduced with the new
 - Job Optimizer.
- Inserting sub-jobs is now done as a transaction, all jobs are inserted or none.
- Checking for datafile physical location done in

bulks, making use of the

partitioning of tables.

 Update and Select in one query wher picking jobs to split,

Job splitter

- Splitting is done by splitting up the data files to different sub-jobs.
- Several splitting strategies, split based on data locality being one.
- Splitting based on data locality is more

resource demanding as queries against

databases to find physical location must be

done.

Splitting based on locality might also trigger merging of sub-jobs, as some sub-jobs might contain too few datafiles.

not ideal in MySQL, but possible	<pre>"A02D*.F00t@ALICE::F2K::SE,ALICE::CCIN2P3::SE,ALICE::ISS::E0S" }; Requirements = (other.Type == "machine") && (member(other.Packages, "V0_ALICE@02sim::v20221227 OrigRequirements = (member(other_Packages "V0_ALICE@02sim::v20221227.1")) && (other_TTL > 366</pre>
with user-defined variables.	TTL = 36000; Price = 200.0; MemorySize = "8GB"; WorkDirectorySize = { "10000MB"
 Describing sub-jobs in the job queue 	<pre>}; MasterJobID = "2833377983"; LPMParentPID = "2824985992"; LPMChainID = "265890"; LPMJobTypeID = "27366";</pre>
database as the difference from	JDLVariables = { "Packages", "OutputDir", "FilesToCheck", "LPMParentPID",
master-job, redundant information.	<pre>"LPMMetaData", "LPMRunNumber", "LPMProductionType", "LPMInteractionType", "LPMProductionTag", "LPMJobTypeID", "CPUCores"</pre>
<pre>InputData = { "LF:/alice/sim/2022/LHC22i1/310018/27596/A02D.root,nodownload" </pre>	}; FilesToCheck = "A02D.root"; LPMMetaData = "Packages=[V0_ALICE@02sim::v20221227-1];0utputDir=/alice/sim/2022/LHC22i1/310018/A0
<pre>S; OutputDir = "/alice/sim/2022/LHC22i1/310018/A0D/003"; Requirements = (member(other.CloseSE, "ALICE::Bari::SE") member(other.CloseSE, "ALICE::CCIN2P3</pre>	LPMRunNumber = "310018"; LPMProductionType = "MC"; LPMInteractionType = "PbPb";
Example of how much information is redundant for a sub- job when using a full JDL.	LPMProductionTag = "LHC2211"; CPUCores = "1"; PWG = "COMMON"; Type = "Job"; Splitted = "se"; Activity = "AOD;Merging"; InputDataType = "AOD";

A user must set a maximum threshold for number of datafiles per

sub-job, and this parameter is used to also get the minimum if not defined by user.

Second major job splitting algorithm is aimed at Monte-Carlo

simulation payload, where the difference is the random seed for the

MC and output directory per sub-job.

