
• Optimization towards database is

mainly introduced with the new

Job Optimizer.

• Inserting sub-jobs is now done as a

transaction, all jobs are inserted or none.

• Checking for datafile physical location done in

bulks, making use of the

partitioning of tables.

• Update and Select in one query when

picking jobs to split,

not ideal in MySQL, but possible

with user-defined variables.

• Describing sub-jobs in the job queue

database as the difference from

master-job, redundant information.

The ALICE experiment at the CERN LHC has undergone a significant upgrade of the detectors, readout, and software prior to Run 3 (2022 -

onward). Following the upgrades, ALICE will collect, reconstruct and analyze approximately 10x more events than in the previous data-taking

period. In preparation for the increased requirements for the distributed computing system, ALICE has developed and deployed a new Grid

middleware JAliEn, which adopted the functionality and updates accumulated in the past 15 years. It makes use of new software tools and modern

development practices. A critical part of the payload management of JAliEn is the so-called Job Optimizer. Based on a general job submitted by a

user the Job Optimizer prepares a specific set of sub-jobs compatible with the site resources, in particular with the data location, software

requirements, quotas, and priorities. The newly developed Job Optimizer is presented in this poster.

Job splitting on the ALICE grid, introducing the new job

optimizer for the ALICE grid middleware.
Haakon André Reme-Ness (Western Norway University of Applied Sciences) on behalf of the ALICE collaboration.

Introduction

Job Optimizer serviceSubmitting a job to the grid

Database Optimization
Job splitter

• User submits a job based on a JDL (Job Description

Language) file.

• Evaluate and validate the JDL.

• Prepare requirements for job, such as ensuring required

packages are available on sites executing the job.

• Insert original job into job queue .

• Not ready to be picked up by a site yet.

• If available, try to perform job split.

• If not, the job gets picked up by the

Job Optimizer later.

• Continuously running with a short cooldown period.

• Picks up job ready to be split from the job queue, based on how old

the job is.

• Submit job id to a thread-pool that starts

the job splitting.

• Size of the thread-pool determines

how many jobs a machine can split

at once and is a configurable

parameter for central machines

to assists with scaling.

• Splitting is done by splitting

up the data files to different

sub-jobs.

• Several splitting strategies, split

based on data locality being one.

• Splitting based on data locality is more

resource demanding as queries against

databases to find physical location must be

done.

• Splitting based on locality might also trigger merging of sub-jobs, as

some sub-jobs might contain too few datafiles.

• A user must set a maximum threshold for number of datafiles per

sub-job, and this parameter is used to also get the minimum if not

defined by user.

• Second major job splitting algorithm is aimed at Monte-Carlo

simulation payload, where the difference is the random seed for the

MC and output directory per sub-job.
Example of how much information is redundant for a sub-

job when using a full JDL.

Poster #220

Overview of a rough workflow for the job optimizer.

	Slide 1

