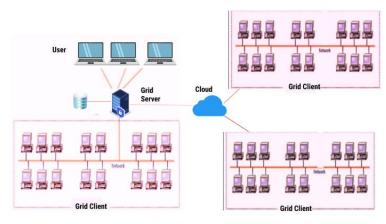
Site Sonar -A Flexible and Extensible Infrastructure Monitoring Tool for ALICE Computing Grid

CHEP 2023

Authors: Kalana Wijethunga, Maksim Storetvedt, Costin Grigoras, Latchezar Betev, Maarten Litmaath, Gayashan Amarasinghe, Indika Perera **Presented by: Maksim Storetvedt**

Content


- 1. Introduction
- 2. Research Problem
- 3. Literature review
- 4. Outcomes
- 5. Design & Implementation

Introduction

Introduction

Grid Computing -

- Comprised of individual computing sites distributed across the globe
- Connected by a middleware and a robust network
- A computing site can be a HTC or a HPC facility with attached storage
- Resulting infrastructure is a distributed batch system with individual elements hidden from the end user

Grid Computing

Introduction ctd..

Grid monitoring -

- Measure and publish state of resource at a particular point in time
- Filtered and aggregated to provide a full overview of the Grid
- Used by administrators to monitor health and efficiency of the Grid
- Used by end users to follow the payload

processing status

Research Problem

Research Problem

- Grid is heterogeneous
 - Different hardware, software, packages, locations, configurations, architectures
- Sometimes hard to **predict the job behaviour**
 - Payload successfully executed on one site may fail or behave differently on a different site
- Requires a more **granular monitoring** and understanding of the Grid sites and sometimes **individual Grid nodes**

Motivation

It is important to

- Ensure the Grid sites are **compatible with the software** versions required by payloads
- Ensure a **correct configuration** of the individual site nodes
- Identify and isolate sites and individual nodes with abnormal configuration and behaviour
- Alert the system administrators and provide debugging information
- Survey the entirety of the Grid sites and nodes and **provide statistical analysis** of various parameters
- Goal: have a **full picture** of the current status of the Grid and optimize for efficient use Site Sonar | CHEP 2023 | Norfolk, VA | May 8 - 12

Problem Statement

Develop an extensible framework to identify node configurations, monitor the grid, and visualize Grid infrastructure information

Literature Review

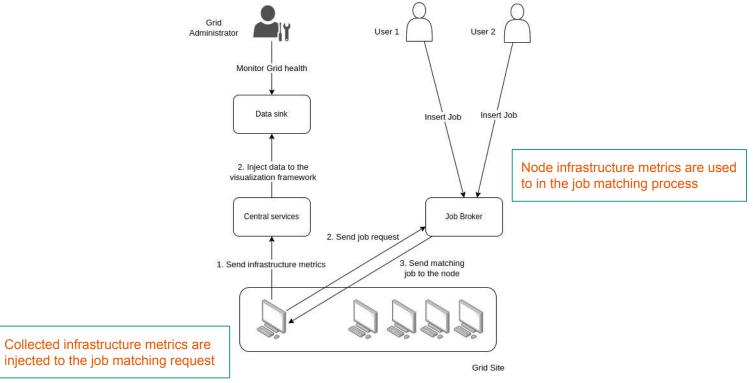
Issues with existing systems

- Data pull model
 - A central server running monitoring probes on individual nodes is not scalable, resource intensive and presents a single point of failure
- Agent installation
 - Most infrastructure monitoring systems require agent installations on Grid sites which is not favoured by Site administrators
- Low flexibility
 - Monitoring systems do not allow collection of unstructured data, hence it does not allow collecting arbitrary data
 - No post data filtering
- Low extensibility
 - Multiple steps and releases needed to add more metrics

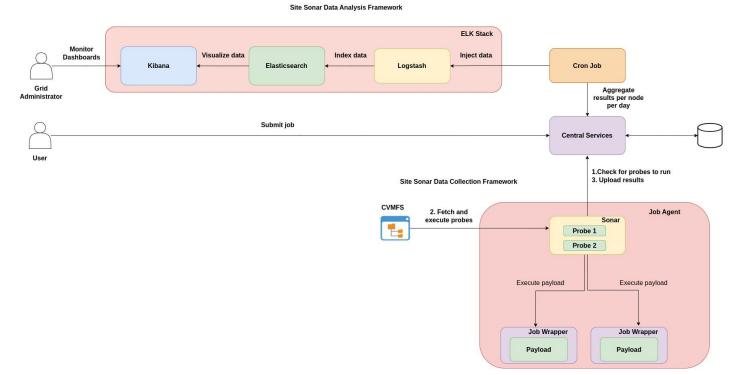
Summary

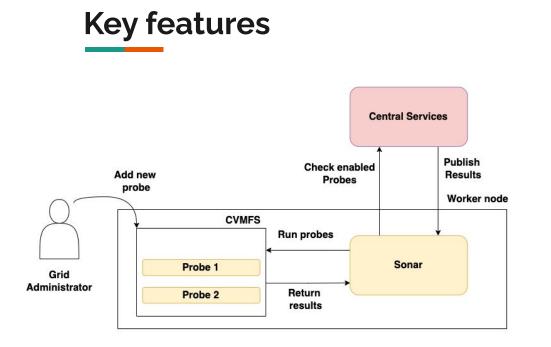
	MonAlisa [1]	GridIce [2]	Paryavekshanam[3]	MONIT [4]	SiteSonar
Focus on infrastructure monitoring	×	~	~	~	~
Push model	~	×	×	~	~
No agent installation on sites	×	×	~	×	~
Allow collecting unstructured data	×	×	×	~	~
Easily extensible	×	×	×	×	~
Can act upon alarming information	×	×	×	~	~

Outcomes

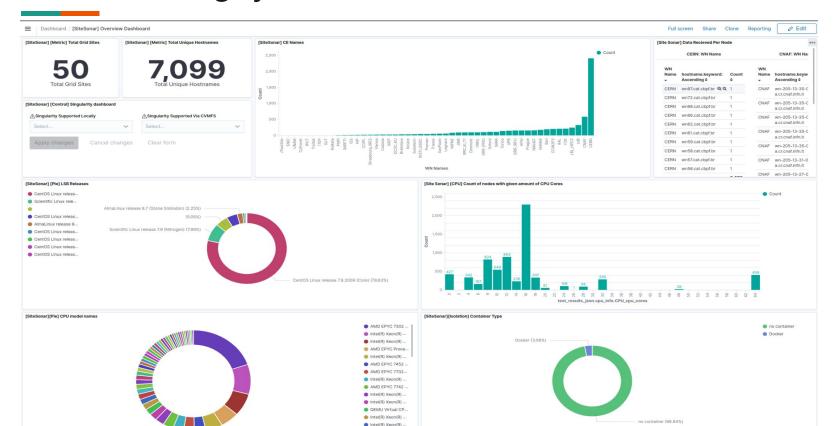

A new Grid Infrastructure Monitoring Tool called **"Site Sonar"** that provides a methodology to identify the capabilities of individual worker nodes in a distributed computing Grid

consisting of a :


- a. Data Collection framework that is
 - i. Flexible to change data structures on demand
 - ii. Easy to add new data collection probes easily
 - iii. Improving Job Matching functionality using collected data
- b. Data Visualization framework that
 - i. Allows post data filtering
 - ii. Provides no-code visualizations


Design & Implementation

Overview of the solution



Extensible - Can add or remove new probes to collect metrics without any code changes

{ "addr": "188.184.162.27", "hostname": "b7s11p0950.cern.ch", "last updated": 1669942802, "ce name": "CERN", "uname": { "UNAME": "Linux b7s11p0950.cern.ch" "cpu info": { "CPU cpu cores": 16, "CPU model name": "Intel(R) Xeon(R) Silver" "home": { "HOME": "/pool/condor/dir 156198" "os": { "OS PRETTY NAME": "CentOS Linux 7 (Core)" }}

Flexible - Can collect any data from a node, easily change data structure and type of data

Grid Monitoring system

Thank You Questions?

email: kalana.wijethunga@cern.ch

References

[1] I. Legrand et al., "MonALISA: An agent based, dynamic service system to monitor, control and optimize distributed systems", Computer Physics Communications, vol. 180, no. 12, pp. 2472-2498, 2009. Available: 10.1016/j.cpc.2009.08.003.

[2] S. Andreozzi et al., "Next steps in the evolution of GridICE: a monitoring tool for grid systems", Journal of Physics: Conference Series, vol. 119, no. 6, p. 062010, 2008. Available: 10.1088/1742-6596/119/6/062010.

[3] K. Prasad, H. Gupta, N. Mangala, C. Subrata, H. Deepika and P. Rao, "Challenges of monitoring tool for operational indian national grid GARUDA", 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH), 2013. Available: 10.1109/parcomptech.2013.6621396

[4] A. Aimar et al., "MONIT: Monitoring the CERN Data Centres and the WLCG Infrastructure", EPJ Web of Conferences, vol. 214, p. 08031, 2019. Available: 10.1051/epjconf/201921408031.