
Managing the OSG Fabric
of Services the GitOps Way

Brian Bockelman, on behalf of the co-authors
Brian Bockelman (Morgridge)
Brian Lin (UW-Madison)
John Thiltges (UNL)
Fengping Hu (U. Chicago)

The OSG Consortium

● OSG Consortium operates a
Fabric of Services to enable
distributed High Throughput
Computing (dHTC).

● These services are run by a
small set of staff funded
through projects such as
IRIS-HEP and PATh.
○ Beyond the operational services,

the projects teams also produce
technologies (HTCondor Software
Suite) and provide
consulting/facilitation services.

The OSG Consortium needs to innovate quickly
and be flexible – all on a “research budget”!

OSG Fabric of Services - at a glance

The OSG Consortium operates more
than

(internal and external) across

for the main central services.

150 services

4 large sites

Of these, there are

and caches that are distributed across
55 Hosted CEs

2 dozen small sites

OSG Fabric of Services - Challenges

● Services and operators are spread
across timezones.

● Not every location has a local
operator.

● Varies widely in complexity
(multi-TB databases to stateless
webapps).

● Strong desire for portability as a
means for disaster recovery!

Example - Hosted Compute Entrypoints
● CEs provide a service that can accept capacity

allocation requests and translate to a glidein in the
local site batch system.

● Can be daunting to run! Requires ‘care and feeding’
as well as expertise on how the distributed system
works.

● Observation: almost every cluster already runs a
remote access protocol, SSH.

● With the ‘hosted CE’ service, OSG staff will run the
CE, connecting to the batch system over SSH.

The price of popularity: ~50 sites use this service.

All of this is run by two
operators, Colby and Jeff, at
about 1 FTE total!

The Fabric of Services, B.K.
(Before Kubernetes)
Slide on how we ran the FoS before Kubernetes,
pros-vs-cons.

● Services were deployed by the local team
according to the local team’s philosophy.

○ Puppet, Ansible, by hand, containers,
non-containers, local DNS infrastructure…

● Services were indecipherable to those
outside the local team.

○ Devs at other universities were unable
● Services were non-portable. Want to move a

service from Indiana to Chicago?
○ Perhaps put the server in the trunk…

The Advent of Kubernetes

Kubernetes has been a game-changer for how we run services:

● Management of software environment: Identical software environment
between instances - no “special tweaks” of the OS based on site prefs.

● Service Orchestration: Operators can describe not just software but also the
larger service deployment - network needs, firewall policies, required storage
subsystem.

● Commonality between sites: Same toolsets to manage services across all
sites.

No “siloing” of operators: anyone can help with any service

… But Kubernetes is not enough!

Kubernetes is not magic, however:

● “What’s the desired state of this service?”: You can query Kubernetes for the
current state – is that the desired state? Or is it just where the last operator
“left off”?

● “Why was this change made?”: What’s the history of how the service got to
this configuration?

● “Oops, I deleted the cluster”: In case of disaster, how do we rebuild?

We found operators were still being siloed because they were lacking
collaboration tools.

Introducing GitOps

Key concept:
All cluster configuration is kept in a git repository whose
state is synchronized to Kubernetes.

GitOps: Powered by Flux

 All Kubernetes-based services for OSG are
synchronized from YAML files kept in Git.

● Operator makes a change, commits it to git,
sends in a pull request.

● Buddy reviews the PR, decides it’s a good idea,
merges.

● The flux operator, which is told to monitor the
repository, notices the commit and executes the
corresponding changes to the cluster’s objects.

Other Supporting Roles

Each cluster runs additional operators to provide services that complement the
GitOps style:

● Sealed-secrets: Allows one to keep encrypted secrets safely in a repo.
● cert-manager: Creates host certificates for services as needed
● External DNS: Integrates the clusters’ services with global DNS.
● Dex: Allows users to fetch k8s credentials through SSO
● Useful, but not critical:

○ Postgres Operator: Allocates Postgres databases on demand.
○ Rook: Provides persistent volumes or filesystems, as needed, from Ceph.
○ OpenEBS: Provisions raw block devices for pods.
○ Traefik: HTTP layer-7 load balancing.

GitOps on Tour

Core Services

The two biggest clusters used by OSG are Tiger (UW-Madison) and
Tempest* (U. Chicago).

These are plain, boring Kubernetes clusters run by GitOps.

Highlights:

● Tiger and Tempest are both in the same Git repository. We can
move services between sites – including DNS! – by migrating
imports between two different directories.

● In 2021, Tiger had a complete loss of the underlying Kubernetes
database. Was able to redeploy the cluster and all services
from scratch within two days (while I was on vacation).

* Actually in transition from an older
cluster at Chicago, River.

PATh Facility: PATh Production + OSG

● National-scale dHTC service: 30k
cores, 36 A100 GPUs
○ Each site maintains hardware and

networking
○ PATh Production Services Team

provisions Kubernetes at remote sites:
■ Florida International University
■ Syracuse University
■ University of Nebraska
■ University of Wisconsin

○ San Diego Supercomputer Center and
Texas Advanced Computing Center
provision their own hosts with Kubernetes

● Developers in PATh Production
Services deploy dHTC services
across distributed Kubernetes
infrastructure

PATh Facility Challenges
● One cluster or many? The PATh project maintains ~6 Kubernetes clusters

total to avoid the headache of a single, distributed cluster…
○ … which may or may not be a good idea! Simpler, yet each upgrade must be done 6x.

● In GitOps, each customization is one patch per cluster.
○ Death by YAML.

● There’s “Kubernetes” and then there’s “Kubernetes”: in a complex setup,
you notice the subtle difference in deployment styles between sites.

● System complexity can result in difficult-to-troubleshoot issues
○ Potentially mitigated via Operations and architecture manuals
○ New technologies complex at first → organizational education opportunities

OSG on Nautilus

The Nautilus cluster, run by the NRP, is a
distributed Kubernetes cluster spanning
the globe.

● OSG runs about a dozen OSDF
caches at various network POPs as
pods on Nautilus.

● The Nautilus hosts are deployed via
GitOps.

● Interesting twist: Flux is not installed
on Nautilus. Instead, the operator on
Tiger synchronizes changes to the
remote cluster.

The Big Picture

Open Issues & Irritations

No silver bullets, right? What’s the catch?

● Flux V2 is configured via custom objects (CRDs) – a learning curve for new
operators.

● Since Flux isn’t part of Kubernetes core, it sometimes interacts strangely with
other operators (its “name prefixes” feature breaks the sealed secrets
operator)

● Should environments be setup in branches or directories? We use directories
- unclear if that’s the right thing. Hard to do one-off environments as in
Puppet.

● Shared repositories means shared breakage: A bad commit can break
deployments for all. Good CI is needed (but difficult).

Summary

Two technologies - Kubernetes (service orchestration) and Flux (GitOps) - have
transformed how the OSG Consortium runs its Fabric of Services.

● Kubernetes enables uniform tooling.
● GitOps wrangles our configuration; while “GitOps” is a trendy name, it’s the

same discovery that keeping Puppet configs in git is a good idea.

The approach is flexible, allowing the operations team manage services in 10
clusters spanning dozens of locations around the planet.

Thanks
This material is based upon work supported by the National Science Foundation

under Grant No. 2030508. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

