CernVM-FS at Extreme Scales

CHEP 2023, Norfolk, VA, USA

Jakob Blomer¹, <u>Laura Promberger¹</u>, Valentin Völkl¹ and Matt Harvey² May 9, 2023

 $^{1}\text{CERN}$, Experimental Physics Department, Switzerland

²Jump Trading

Motivation

Expectation for HL-LHC

Increase of all CVMFS metrics by an order of magnitude

Accumulation of (existing) data

- More versions
- More architectures/compilers
- Larger software projects

Extending use cases

- Faster release cycles
- Higher usage of containers
- More repositories

Motivation II

New versions up to 22% larger and externals are 10 - 220% larger

Motivation III

Repo	Date	#Revision	
alice-ocdb.cern.ch	Feb 2018	112327	
	Apr 28, 2023	1502806	
lhcbdev.cern.ch	Feb 2018	117483	
	Apr 28, 2023	2157721	

ALICE OCDB has on average 20 new revisions per day

 $\mathsf{LHCbDev}\ \mathsf{has}\ \mathbf{on}\ \mathbf{average}\ \mathbf{1067}\ \mathbf{new}\ \mathbf{revisions}\ \mathbf{per}\ \mathbf{day}$

Good News: We know already it works...

Jump Trading: Growth of data of the data archive

Jump Trading: Architecture

Good performance achieved through multiple level of caches, data is stored in the cloud

CVMFS Challenges and Solutions

"Problems"

- Growth of data
- Acceptance in community means more opportunities where cvmfs is used

Solution

- Optimize performance by smarter caching in all locations
- Increase ease-of-use of end users and operators
- Optimize download bottleneck

Improvements

Caching Performance

- 2.10 Page Cache Tracker: Much better use of kernel page cache
- 2.10 Support for in-place replacement of files without crashing long-running software that use the "old" version of these files
- 2.11 Symlink caching for fuse3 (Kernel 6.2, RedHat backporting request open)
- 2.11 Statfs caching
- WIP 2.11) Proxy sharding to allow for better caching
- Future Prefetching of known files clusters (Python, ROOT, etc.)

Download Improvements

- WIP 2.11 Parallel file decompression during download
- (Future) Zstd as new compression algorithm

Improvements II

Operational Improvements

- 2.10 More extended attributes, and 2.11 protected extended attributes
- 2.10 Better publish failure handling on publishers
- 2.10 Support for unpacking container images through Harbor registry proxies
- 2.11 Telemetry exposure of internal affairs to allow better monitoring
- 2.11 Quicker garbage collections and cvmfs_server check
- (Future) Creation of official Helm chart for cvmfs on Kubernetes
- Future Feature parity between remote publishers (with gateway) and local publishers

ATLAS Performance: CVMFS version 2.9 vs 2.10

Many-core compilation of ATLAS Athena with having the build tools on cymfs

Improvements due to the page cache tracker

Some First Performance Comparison - Setup

Setup

- CVMFS client: 2x AMD EPYC 7302 16-Core, 256 GB RAM, 2 TB NVMes
- Private squid proxy: 1x Intel i7-7820X 8-Core, 64 GB RAM, 1 TB HDDs

Commands: Load software from CVMFS

- CMS: Create a simulation setup script
- DD4Hep: Load detector description in ROOT
- ROOT: Load ROOT and draw a histogram
- Tensorflow: Load python and the modules numpy and tensorflow

Measurements

- Cold, warm, and hot cache on full machine (1 proc per hyper-thread)
- time, cvmfs_talk -i <repo> internal affairs

Some First Performance Comparison - version 2.9 vs 2.11 (WIP, April 23)

Some First Performance Comparison - Symlink Caching

CVMFS v2.11 (WIP, April 23) with and without symlink caching (Default Client Config. Statfs Caching, Kernel Caching)

Future: A first exploration of using Zstd

Compressing CVMFS cache file chunks

Library	uncompressed	zlib	zstd
#Files	1004	1004	1004
Size (MB)	2300	999	866
Time (min)	-	1:36	0:15
Compression Ratio	-	2.30	2.66

 ${\tt Zstd}$ saves 15% in space and is 6x faster than ${\tt zlib}$

Summary

CVMFS expects an order of magnitude growth in all metrics for HL-LHC

- Confident that the current design sustains the expected scale
- Rich set of performance and operational improvements underway to ensure proper quality of service at HL-LHC scales

Questions?

CMSSW: Increase of Number of Files

Some First Performance Comparison - Finding bugs

