Lightweight Distributed Computing System Oriented to LHAASO Data Processing

Jingyan Shi, Xiaowei Jiang, Chaoqi Guo, Ran Du, Yaodong Cheng

shijy@ihep.ac.cn

IHEP – CC

- **Local Cluster Expansion**
- **B** Next Plan
- $\widehat{4}$ Summary

Introduction to the Institute of High Energy Physics (IHEP)

- The largest fundamental research center in China with research fields:
 - **Experimental Particle Physics**
 - **Theoretical Particle Physics**
 - Astrophysics and cosmic-rays
 - Accelerator Technology and applications
 - Synchrotron radiation and applications
 - Nuclear analysis technique
 - Computing and Network application
- Computing Center of IHEP
 - Provides computing, storage, network services for HEP experiment offline data processing
 - Computing:
 - HTCondor Cluster, SLURM Cluster, Grid site IHEP Leading
 - Storage:
 - Lustre file system, EOS file system
 - EOSCTA is used as the Tape management
 - Network:
 - computing center backbone: 160Gbs,
 - WAN bandwidth: 40Gbs

International **Collaboration**

ATLAS

BESIII

AliCPT

DUNE

CMS

DYB

BELLE II AMS02 Particle Physics experiments

Particle Physics experiments

JUNO

Cosmic ray and astrophysics experiments

HXMT

GECAM

CSNS BSRF **HEPS** Neutron Source and Synchrotron Radiation Facilities

A brief introduction to LHAASO

• Large High Altitude Air Shower Observatory (LHAASO)

- A new generation all-sky facility
 - Combined study of cosmic rays and gamma rays
 - Wide energy range of $10^{11} 10^{17}$ ev
- Located in Daocheng, Sichuan Province
 - Altitude: 4410 m
 - Coverage area: 1.3 km²
- Fully completed in Jun. 2021
 - Raw data per year: I 3PB (7PB more than the plan)
 - Storage capacity: > 40 PB (20PB more than the plan)

LHAASO Data Processing

- Computing issues
 - No mature data management system developed
 - Most users are not sophisticated
- Computing environment
 - LHAASO software is stored at /CVMFS
 - LHAASO data is stored at local EOS
 - Most tasks are HTC job and running at HTCondor cluster of IHEP
 - User auth is based on Kerberos (krb5)
 - A simplified job management tool developed for users
 - For example: hep_sub -g lhaaso job.sh

~2.5Gbps

The small on-site Data Center at Daocheng (altitude 4500m)

The Computing Center at IHEP, Beijing

- Big gap between the requirement and reality
 - Estimation: ~20k CPU cores and 40 PB disk storage are required
 - Reality: <I I k CPU cores

Find More Resources for LHAASO

- IHEP local HTCondor cluster (~15k cpu cores) is the main place for LHAASO data processing
- IHEP local Slurm cluster -- case |
 - One partition (~Ik CPU cores) can accept LHAASO job when it is free
 - Known idle time period
 - Same user name space as IHEP HTCondor cluster
 - IHEP EOS is accessible from the slurm worker node
- Big Data center located at Dongguan, Guangdong province -- case 2
 - ~4k X86 CPU and 10k ARM CPU with 10G network link
 - No permanent storage provided
 - Different user name space from the IHEP cluster
- Small sites at domestic collaboration member organization -- case 3
 - Small resources with limited network connection
 - No mature technical support

Light Weight Distributed Computing for LHAASO

- Keep IHEP cluster as the main cluster
- Expand IHEP cluster to the remote resource
 - Add remote worker nodes into LHAASO CPU pool of the IHEP HTCondor cluster
 - Submit glidein batch job to the remote site
 - Run IHEP HTCondor startd inside the glidein job
- Keep the same usage pattern for LHAASO data processing
 - Jobs are submitted to IHEP HTCondor cluster
- Suitable jobs are scheduled to the remote job slots
- User kerberos token is transferred with the user job to the remote worker node
 - Result is copied back to IHEP EOS via xrootd with token
- No direct data access to IHEP EOS during job running

Schedule Job to the Suitable Job Slots

- LHAASO job classification
- 3 LHAASO detectors have their own simulation, reconstruction and analysis jobs
 - Classify the jobs based on the CPU time and IO access
 - Take one of the detector, WFCTA, as the example
 - "jobtype" attribute is set by "hep job tool" when user submits the job

	Job Type	Input data	Output data	CPU time	
Suitable to run at Dongguan	corsika	Little	a lot	too much	Suitable to run at IHEP slurm Suitable to run at IHEP htcondor
	geant4	a lot	mid	too much	
Suitable to run at remote site	corsika+geant4	little	mid	too much	
	reconstruction	mid	a little	a little	
	analysis	mid	a little	a little	

User Authentication

- After User login to the IHEP cluster successfully, his Kerberos token is generated
- The token is transferred to the worker node with the user job
 - Prolong token lifetime
 - Job is in the queue
 - User token is copied to the token dir by hep_job tool and a root deamon is responsible to prolong and clean the tokens
 - Job is running
 - The wrapper inside the glidein exports token path as the environment variable
 - Job access IHEP EOS from the remote site by the token
 - The wrapper starts a process to prolong the token during the job lifetime
 - The token would be cleaned by the "startd" of worker node after the job is finished

No Direct Data Access to IHEP EOS

- Provide WFCTA job script (saved at cvmfs)to the user.
- Both IHEP cluster and remote site use the same WFCTA job script
 - Transfer the input data file to the local disk of the worker node based on the authentication of job token
 - Job result is written to the local disk of worker node firstly
 - The result will be transferred back to the IHEP EOS via XRootd (xrdcp) with the job token authentication
 - Clean the data in the job directory at worker node

Case 1: Running at IHEP Slurm Cluster

- User name space and EOS file system are same as that of IHEP HTCondor cluster
 - Submit glidein jobs to the Slurm worker nodes during the idle period as the root privilege
 - •Glidein jobs run as user "condor" which is same as the owner of "startd" daemon running at the local HTCondor cluster
 - •LHAASO jobs run inside startd
 - •All the types of LHAASO job can run at IHEP SLURM cluster

Case 2 and Case 3: Running at Remote Resource

- Submit glidein slurm/htcondor jobs from login node of the remote cluster
 - Glidein jobs then run a 'startd' daemon on remote nodes which connects HTCondor at IHEP
 - A job slot is added to the IHEP HTCondor cluster
 - Glidein job slot is set only accept dedicated job type job (corsika, geant4 etc.)
- Corsika jobs and geant4 jobs are submitted to IHEP cluster by user
- The job will be scheduled to the glidein job slots at remote site
 - The last step of the job is to transfer result file back to IHEP EOS with the token auth.

Others

- ARM machine support testing
 - We have about 10k ARM CPU cores
 - Compile LHAASO software on ARM architecture
 - Physical Result evaluation is under going
 - Compile HTCondor on ARM architecture
 - •ARM HTCondor worker node is ready

 Lightweight Distributed Computing System Oriented to LHAASO Data Processing provided 2.4M CPU hours and generated 80TB simulation data for LHAASO

• Next Plan

- ARM machine will be in production next month
- Glidein factory is under going
- More efficient scheduling algorithms need to be developed

- LHAASO needs more computing resources
- A lightweight dHTC designed and deployed for LHAASO
 - expand IHEP local cluster to the remote site
 - Keep the user cluster usage pattern
 - Have integrated remote resource from several sites
- More works need to be done

