Lightweight Distributed Computing System Oriented to LHAASO Data Processing

Jingyan Shi, Xiaowei Jiang, Chaoqi Guo, Ran Du, Yaodong Cheng
shijy@ihep.ac.cn
IHEP - CC

Outline

1 Introduction and Motivation
(2) Local Cluster Expansion

3 Next Plan
(4) Summary

Introduction to the Institute of High Energy Physics (IHEP)

- The largest fundamental research center in China with research fields:
- Experimental Particle Physics
- Theoretical Particle Physics
- Astrophysics and cosmic-rays
- Accelerator Technology and applications
- Synchrotron radiation and applications
- Nuclear analysis technique
- Computing and Network application
- Computing Center of IHEP
- Provides computing, storage, network services for HEP experiment offline data processing
- Computing:
- HTCondor Cluster, SLURM Cluster, Grid site IHEP Leading
- Storage:
- Lustre file system, EOS file system
- EOSCTA is used as the Tape management
- Network:
- computing center backbone: 160 Gbs ,
- WAN bandwidth: 40Gbs

JUNO

CEPC
Particle Physics experiments

LHASO

AS γ

HXMT

GECAM Cosmic ray and astrophysics experiments

CSNS

HEPS

Neutron Source and Synchrotron Radiation Facilities

A brief introduction to LHAASO

- Large High Altitude Air Shower Observatory (LHAASO)

- A new generation all-sky facility
- Combined study of cosmic rays and gamma rays
- Wide energy range of $10^{11}-10^{17} \mathrm{ev}$
- Located in Daocheng, Sichuan Province
- Altitude: 4410 m
- Coverage area: $1.3 \mathrm{~km}^{2}$
- Fully completed in Jun. 2021
- Raw data per year: I3PB (7PB more than the plan)

- Storage capacity: > 40 PB (20PB more than the plan)

LHAASO Data Processing

- Computing issues
- No mature data management system developed
- Most users are not sophisticated
- Computing environment
- LHAASO software is stored at /CVMFS
- LHAASO data is stored at local EOS
- Most tasks are HTC job and running at HTCondor cluster of IHEP
- User auth is based on Kerberos (krb5)
- A simplified job management tool developed for users
- For example: hep_sub -g Ihaaso job.sh

The Computing Center at IHEP, Beijing

- Big gap between the requirement and reality
- Estimation: ~20k CPU cores and 40 PB disk storage are required
- Reality: <llk CPU cores

Find More Resources for LHAASO

- IHEP local HTCondor cluster ($\sim 15 \mathrm{k}$ cpu cores) is the main place for LHAASO data processing
- IHEP local Slurm cluster -- case I
- One partition (~Ik CPU cores) can accept LHAASO job when it is free
- Known idle time period
- Same user name space as IHEP HTCondor cluster
- IHEP EOS is accessible from the slurm worker node
- Big Data center located at Dongguan, Guangdong province -- case 2
- ~4k X86 CPU and I0k ARM CPU with I0G network link
- No permanent storage provided
- Different user name space from the IHEP cluster
- Small sites at domestic collaboration member organization -- case 3
- Small resources with limited network connection
- No mature technical support

IHEP Site

Slurm Cluster

 For Public (case 1)HTCondor Cluster
Purchased by LHAASO

Light Weight Distributed Computing for LHAASO

- Keep IHEP cluster as the main cluster
- Expand IHEP cluster to the remote resource
- Add remote worker nodes into LHAASO CPU pool of the IHEP HTCondor cluster
- Submit glidein batch job to the remote site
- Run IHEP HTCondor startd inside the glidein job
- Keep the same usage pattern for LHAASO data processing
- Jobs are submitted to IHEP HTCondor cluster
- Suitable jobs are scheduled to the remote job slots
- User kerberos token is transferred with the user job to the remote worker node
- Result is copied back to IHEP EOS via xrootd with token
- No direct data access to IHEP EOS during job running

Design of the LHAASO Cluster Extension

Schedule Job to the Suitable Job Slots

- LHAASO job classification
- 3 LHAASO detectors have their own simulation, reconstruction and analysis jobs
- Classify the jobs based on the CPU time and IO access
- Take one of the detector, WFCTA, as the example
- "jobtype" attribute is set by "hep job tool" when user submits the job

User Authentication

- After User login to the IHEP cluster successfully, his Kerberos token is generated
- The token is transferred to the worker node with the user job
- Prolong token lifetime
- Job is in the queue
- User token is copied to the token dir by hep_job tool and a root deamon is responsible to prolong and clean the tokens
- Job is running
- The wrapper inside the glidein exports token path as the environment variable
- Job access IHEP EOS from the remote site by the token
- The wrapper starts a process to prolong the token during the job lifetime
- The token would be cleaned by the "startd" of worker node after the job is finished

No Direct Data Access to IHEP EOS

- Provide WFCTA job script (saved at cvmfs)to the user.
- Both IHEP cluster and remote site use the same WFCTA job script
- Transfer the input data file to the local disk of the worker node based on the authentication of job token
- Job result is written to the local disk of worker node firstly
- The result will be transferred back to the IHEP EOS via XRootd (xrdcp) with the job token authentication
- Clean the data in the job directory at worker node

Case 1: Running at IHEP Slurm Cluster

- User name space and EOS file system are same as that of IHEP HTCondor cluster
- Submit glidein jobs to the Slurm worker nodes during the idle period as the root privilege
- Glidein jobs run as user "condor" which is same as the owner of "startd" daemon running at the local HTCondor cluster
- LHAASO jobs run inside startd
- All the types of LHAASO job can run at IHEP SLURM cluster

Case 2 and Case 3: Running at Remote Resource

- Submit glidein slurm/htcondor jobs from login node of the remote cluster
- Glidein jobs then run a 'startd' daemon on remote nodes which connects HTCondor at IHEP
- A job slot is added to the IHEP HTCondor cluster
- Glidein job slot is set only accept dedicated job type job (corsika, geant4 etc.)
- Corsika jobs and geant4 jobs are submitted to IHEP cluster by user
- The job will be scheduled to the glidein job slots at remote site
- The last step of the job is to transfer result file back to IHEP EOS with the token auth.

Others

- ARM machine support - testing
- We have about IOkARM CPU cores
- Compile LHAASO software on ARM architecture
- Physical Result evaluation is under going
- Compile HTCondor on ARM architecture
- ARM HTCondor worker node is ready

Next Plan

- Lightweight Distributed Computing System Oriented to LHAASO Data Processing provided 2.4M CPU hours and generated 80TB simulation data for LHAASO
- Next Plan
- ARM machine will be in production next month
- Glidein factory is under going
- More efficient scheduling algorithms need to be developed

Summary

- LHAASO needs more computing resources
- A lightweight dHTC designed and deployed for LHAASO
- expand IHEP local cluster to the remote site
- Keep the user cluster usage pattern
- Have integrated remote resource from several sites
- More works need to be done

Thank you for your attention!

Any questions?

