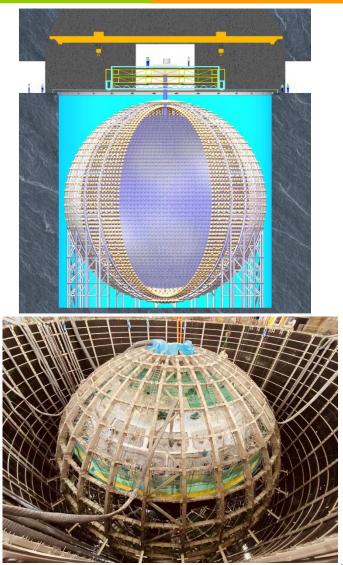
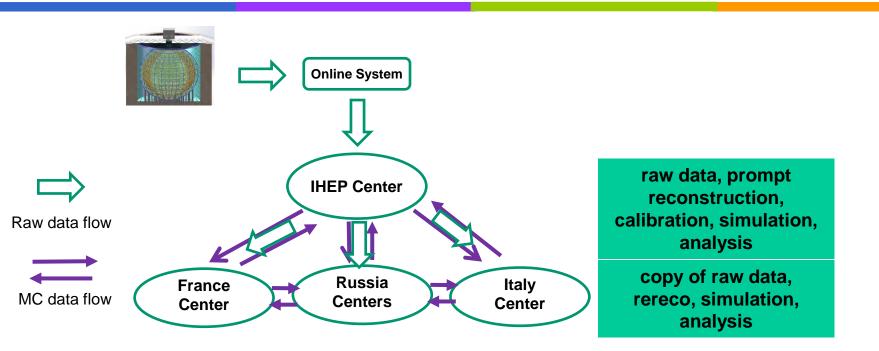
JUNO Distributed Computing System

Xiaomei Zhang


Institute of High Energy Physics

On behalf of JUNO DCI group

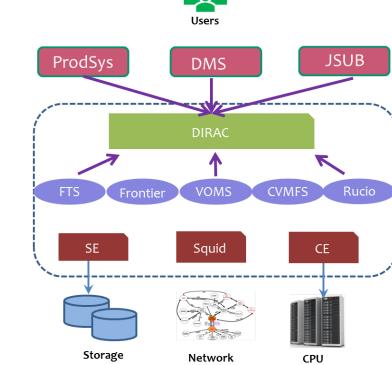

CHEP2023, May 8

JUNO

- A multi-purpose neutrino experiment
 - Measure neutrinos (solar neutrinos, supernova neutrinos, atmospheric, geo) mass hierarchy and mixing parameters
 - Located at Guangzhou, China
 - Expect to take data in 2024
- JUNO-TAO is a satellite detector
 - Precisely measure reactor energy spectrum, improve sensitivity of JUNO on mass hierarchy study
- Data volume expected
 - Raw: 2.4PB/year (JUNO+TAO)
 - MC+Rec: 600TB

Data centers and Computing model

- Five data centers: IHEP, CC-IN2P3, INFN-CNAF, JINR, MSU
- Raw data flows from Online to IHEP which then immediately distributes to other centers
- 1st Reconstruction and Calibration will run in IHEP
- MC Simulation, 2nd Reconstruction and Analysis are expected to run in all data centers
- Other centers provide a backup to JUNO data (CNAF/JINR 100%, IN2P3 1/3)


System Architecture

Tools and

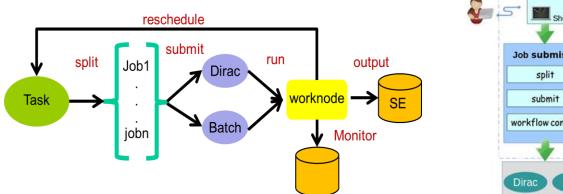
Interface

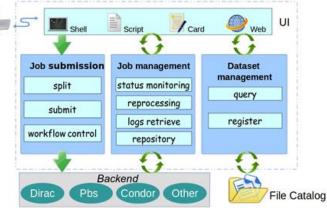

Service

- JUNO distributed computing system was built to take care of data processing and data distribution in grid environment
- DIRAC is core of the system
 - Organize heterogeneous resources
 - Provide framework for workload management (WM) and data management (DM)
 - Integrate necessary middleware and services
- Other WLCG services used
 - VOMS/IAM, authentication and authorization
 - FTS, file movement
 - CVMFS, software distribution
- Experiment tools and Interface (details in Resource later slides)
 - JUNO-specific systems developed to meet the requirements of JUNO data placement and processing
 - All codes were migrated to python3

ProdSys 1/2

- Implemented as a data-driven pipeline system, designed to
 - submit JUNO production tasks (simulation, re-reconstruction...) in grid env
 - manage workflow and dataflow in the tasks automatically
- Each JUNO production task is composed of several steps
 - Detector simulation (detsim), Electronics simulation (elecsim), PMT Reconstruction (cal), Event Reconstruction (rec), Replication of output to destination sites
- All steps or part of them can be connected to each other with data to form a pipeline, chained and started through ProdSys

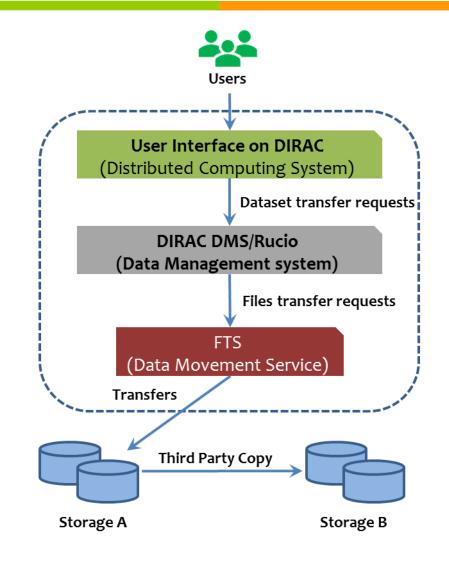

ProdSys 2/2


- ProdSys is implemented based on DIRAC
 - **Frontend** Accept user requests and create JUNO workflow and dataflow
 - Transformation system (TS) Transform JUNO workflow and dataflow into a pipeline
 - **DIRAC File Catalogue (DFC)** Provide query of metadata and file status which is used to trigger the process
 - Jobs and file transfers are submitted to DIRAC WMS and DMS
- Prodsys regularly used in JUNO MC simulation tasks
- Same mechanism will be used for JUNO 2nd reconstruction
 - Real data -> Cal -> Rec -> Destination SEs

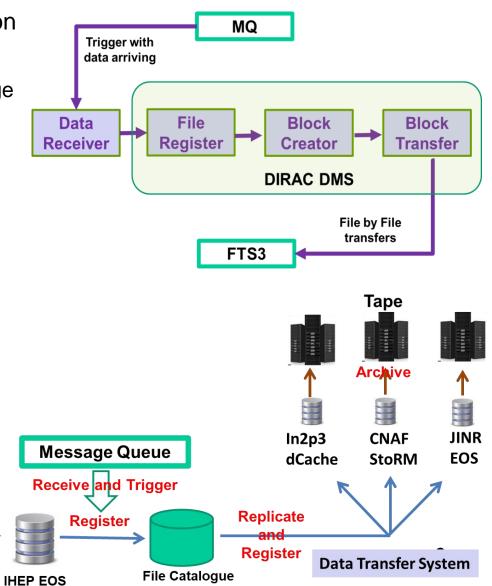
Prod group Define/Submit/Control production tasks PrdSys Split/Create/Assign workflow and dataflow Transformation jobs data WMS DMS DIRAC JUNO Resources

JSUB

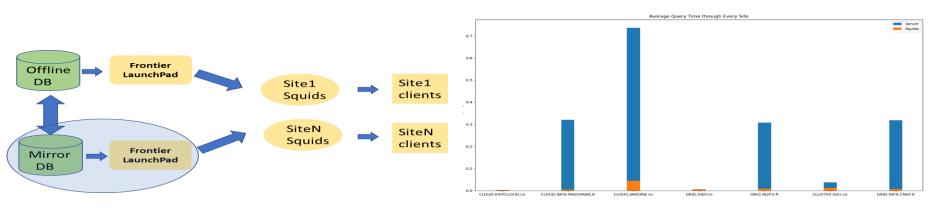
- JSUB a lightweight user job submission tool, developed in python
 - Ease process of physics analysis and small number of simulation for JUNO users
 - Automatically take care of life cycle of **user analysis** in grid env
- Main common function packages in JSUB
 - Job splitting and submitting, Job management, dataset operation, backend, UI
 - User Steering file is written in YAML
- Main features
 - Extensible with multi-experiments and multi-backends
 - Support fast submission with DIRAC parameter job submission feature
 - Support flexible splitters with multi parameters to split tasks into subjobs



7

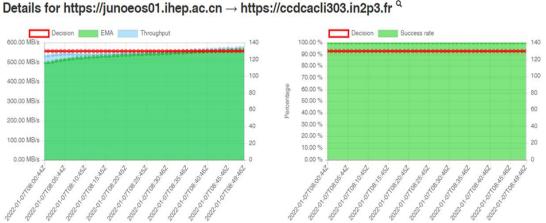

Data management

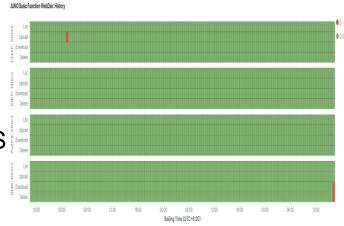
- User Interface with interactive console and commands
 - Provide a global data view
 - Create and manage dataset
 - Submit and manage transfer requests
- DIRAC Data Management System (DIRAC DMS)
 - DFC: metadata and replicas catalogue
 - Request Management System and Transformation System: split dataset into file transfers and arrange in queue
 - Interface to available file transfer tools
- Rucio is under evaluation
- Data Movement Service FTS
 - Take care of file transfers

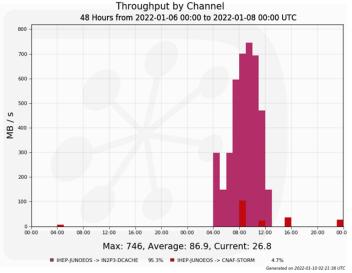

Raw data transfer system

- Aim to take care of raw data distribution to data centers
 - Receive data information from Message Queue to trigger the whole process
 - Register data in DFC
 - Replicate data to data center and register in DFC
 - Archive in tape and register in DFC
 - Validate data and monitor status
- It consists of four modules, implemented based on DIRAC DMS
 - Data Receiver, File Register, Block Creator, Block Transfer
 - Transfers and validation are based on blocks which are grouped by data receiving date
 Arrive

Offline Condition DB access


- JUNO uses MySQL to store condition data
- Frontier/Squid infrastructure has been set up in grid env
 - Help avoid high load in central DB and speed up access to condition data
- Frontier server was deployed in IHEP and JINR, connected to DB
- Tests done with jobs has proved system is functioning
 - Show > 10 times better with cache access than direct DB access
- Tests to simulate production-like environment will be done this year



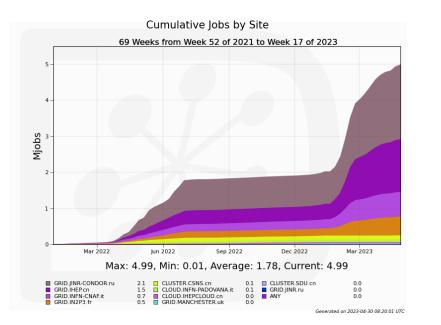

HTTP TPC

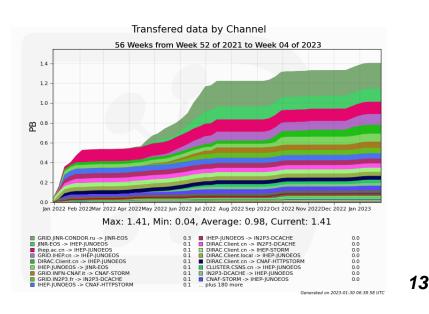
- All SEs has completed migration from Gridftp to * **HTTP TPC**
- TPC daily monitoring has been developed using * ES+kibana
- Pressure tests has been done with DIRAC DMS+FTS
 - Maximum speed can reach limitation of network bandwidth (IHEP EOS -> IN2P3 dCache)
 - Problem found on communications between StoRM and EOS, updating to EOS5 to solve
- More pressure tests are planned this year

Decision EMA Throughput 600.00 MB 500.00 MB/s 100 400.00 MB/s 80 300.00 MB/s 80 200.00 MB/s 100.00 MB/s 0.00 MB/s

Token-based AAI

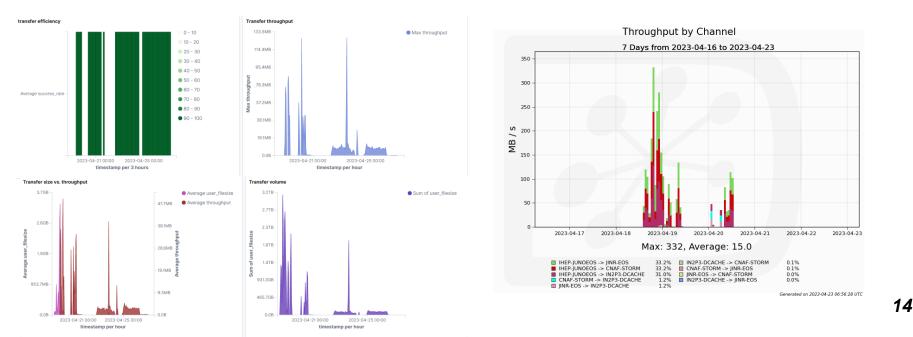
- Migration from X509-based AAI to tokenbased AAI is on-going for JUNO DCI
- Status:
 - IAM service has been set up: <u>https://iam-juno.cloud.cnaf.infn.it/login</u>
 - IHEP SSO is connected
 - Connections to eduGAIN are in progress
 - CNAF and IHEP are working
 - IN2P3 and JINR in testing
 - Some site CEs and SEs already supported token
 - More to do:
 - Push IAM service to be in production in parallel with VOMS
 - Migrate DIRAC to the version supporting both certificate and token
 - Complete CEs and SEs support of token




Sign in with your juno credentials

1	Username
	Password
	Sign in
	Forgot your password?
	Or sign in with
	ReduGAIN
INFN	
	· 使用科学院為在新江和此所 Institute of Might Energy Mynics Chinese Madewy of Sciences

System in production 1/2


- ✤ ~5M Jobs are submitted and run with ProdSys since beginning of 2022
 - ~5.18MHS06 Normalized CPU time
- DM has been used for massive file registration and file transfer
 - 1.4PB data transferring
 - In DFC, ~2PB data and 16M files registered and visible to users

System in production 2/2

- Raw data transfer system has started testing with commissioning data
- Plan to use FTS Monitoring dashboards for transfer
 - Infrastructure is set up
 - FTS->ActiveMQ->logstash->ES->Kibana/Grafara
- DIRAC Accounting will be used for history view

Summary and Plan

- As a medium-size experiment, JUNO has successfully set up distributed computing system using existing WLCG middleware with quite limited manpower
- The system meets the requirements of JUNO computing model, successfully used in some of JUNO production activities
- Pressure testing on production-like environment will be carried out soon to prepare for data-taking in 2024

Thank you!