
The integration of heterogeneous resources in the CMS 
Submission Infrastructure for the LHC Run 3 and beyond

A. Pérez-Calero Yzquierdo1, Marco Mascheroni2, Saqib Haleem3, 
Edita Kizinevic4, Farrukh Aftab Khan5, Maria Acosta Flechas5, 

Hyunwoo Kim5 and Nikos Tsipinakis4 on behalf of the CMS 
Collaboration

1. CIEMAT and PIC (ES), 2. (US), 3. National Center for Physics (PK), 4. CERN, 5. Fermi National Accelerator Lab. (US)

CHEP 2023, May 11th 2023



Outline of the talk

● Intro to using heterogeneous resources
● GPUs integration in SI

○ GPUs in FE and pilot factories, first matchmaking
○ GPUs in the Global Pool, second matchmaking
○ Using GPUs in WM and CRAB

● GPUs already available to CMS
● Non-x86 CPU architectures
● Conclusion and next steps

2



Interest on heterogeneous resources

● The availability of compute power in non CPU, non x86 processor types is abundant and 
increasing

○ For example, looking at the examples from the top500.org list, it’s clear that:
■ A significant fraction of the processing power in HPCs is provided by accelerators.
■ Many top positions include non-x86 CPU architectures (e.g. IBM Power systems:Summit, Sierra, Marconi-100)

○ Not only at HPC facilities, but also among traditional WLCG computing sites as well

● HEP experiments must be prepared to run substantial part of their processing tasks at HPCs

● CMS internal study (ECoM2x, 2020) of the computing model and resource needs looking into the 
LHC Run 3, but specially at the HL-LHC phase, includes in its recommendations: 

○ “CMS should continue to aggressively expand the resources accessible to it for production processing at facilities 
beyond those dedicated to the LHC”

○ “CMS should strive towards using HPC resources effectively” 
○ “Use of on board accelerators as much as possible during reconstruction”
○ “Work towards enabling CMS software on CPUs, GPUs, FPGAs and TPUs as primary targets for its software stack”
○ “Support non x86_64 CPU architectures”

● The CMS Phase-2 Computing model update document (CMS-NOTE-2022-008) also advises to 
abandon the assumption of uniformity of our compute resources, evolving our WM and SI 
systems to embrace heterogeneity

3



4

The CMS Submission Infrastructure

The CMS Submission Infrastructure team in CMS Offline and Computing is in charge of operating a set of federated HTCondor 
pools which aggregates resources from 70 Grid sites, plus non-Grid resources, where reconstruction, simulation, and analysis 
of physics data takes place

The challenges:
● Operate our infrastructure managing an 

ever growing collection of computing 
resources

● Use all of our resources efficiently, 
maximizing data processing throughput

● Enforce task priorities according to CMS 
research programme 

● Connecting new and more diverse resource 
types (including non-x86 architectures and 
GPUs)  and sources (WLCG and OSG, 
HPC, Cloud, volunteer)

The topic of this talk



GPUs integration to CMS SI

5



Non-pledged heterogeneous resources

In relation to the use of GPUs in CMS offline computing, we need to consider that 
all GPUs available and in use by CMS today are still opportunistic, not pledged:

● Pledged CPUs: agreed upon standard job execution slot
○ 8-core slots, 48h of runtime, Minimum of 2 GB/core, etc

● No equivalent to “standard job slot” for GPUs. This affects:
○ How to approach sites on what GPU resources CMS can use: how do we even know there 

are GPUs available for CMS? What CEs, queues and other parameters to use?
○ What is the correct GPU type?
○ How to configure the execution of tasks on these resources: no predefined rules on e.g. slot 

size, max execution time, memory, etc 

● Deeply affects how we use the resources: no generic slot, requires more 
careful and detailed job and slot description in order to select the correct slot 
and avoid wastage

6



Using resources in our dynamic HTCondor pools

7

Two matchmaking stages in Submission Infrastructure: 
resource allocation (GlideinWMS) and job to slot 
matchmaking (HTCondor)

1. GlideinWMS and pilot jobs
○ Submit resource requests on sites CEs in 

order to join them into the Global HTCondor 
Pool

2. HTCondor matchmaking
○ Slot joins the Global Pool, then resources are 

negotiated and assigned to payload jobs

GPU resources just follow the same general logic



GPU resource description in GWMS Factories

● GPU resource description for first matchmaking in pilot factory entries 
○ Limited information about the available GPUs:

■ CEs that allow access to GPUs, queue names, etc
■ Slot attributes agreed upon with the site admins, (e.g. GPU slot lifetime 24h? 48h?)
■ Statically configured, with most GPU specs only available at pilot runtime 

○ Typically, GPU slots are configured along with standard pilot features (8 CPU cores, 2 GB/core RAM)

8

<entry name=" CMSHTPC_T2_US_Wisconsin_cmsgrid01_gpu" auth_method="grid_proxy" 
gatekeeper="cmsgrid01.hep.wisc.edu cmsgrid01.hep.wisc.edu:9619" gridtype="condor" ...>
   <config>
        (...)
     <submit_attrs>
         <submit_attr name=" +maxMemory" value="20000"/>
         <submit_attr name=" +xcount" value="8"/>
         <submit_attr name=" Request_GPUs" value="1"/>
     </submit_attrs>
  </submit>
   </config>
   <attrs>
  <attr name="GLIDEIN_CMSSite" ... type="string" value="T2_US_Wisconsin"/>
  <attr name=" GLIDEIN_CPUS" ... type="string" value=" 8"/>
  <attr name=" GLIDEIN_MaxMemMBs" ... type="int" value=" 20240"/>
  <attr name="GLIDEIN_Max_Walltime" ... type="int" value="216000"/>
  <attr name=" GLIDEIN_Resource_Slots" ... type="string" value="GPUs,1,type=main"/>
  (...)
   </attrs>
</entry>



First Matchmaking (GWMS Front End)

● First matchmaking: 
○ Only jobs with RequiresGPU will trigger GPU pilot job submission
○ Slot description very limited (“slot has some kind of GPU”), runtime parameters are not available at this stage yet 
○ But of course other parameters, such as site whitelist, still apply here
○ Upon successful match, pilots are submitted to all corresponding CEs

● Being opportunistic, we implemented site preferences concerning how to use their GPUs, reserving the slot for 
GPU-like workloads:

○ No CPU jobs will start for the first 30 mins 
○ Then either open for all jobs, or return the slot back to site (site preference)
○ Once GPU is in use, try to saturate the remainder CPU part

● Given late-binding, to minimize waste, avoid pilots landing on a GPU node once the GPU workload is done
○ Remove stale pilots still queued at sites CEs

■ Common practice for CPU pilots, but even more critical 
for GPUs

9

Pilot
Startd



Resource description in the Global Pool

10

● Once a pilot starts execution on remote resources, GPU properties are updated to the slot classad:
○ condor_gpu_discovery retrieves most of the relevant matchmaking attributes
○ CMS_CUDA_SUPPORTED_RUNTIMES from CMS script in cvmfs

GPU slot attributes
CPUs = 8
TotalSlotMemory = 20000
GPUs = 2
CUDACapability = 8.0
CUDAClockMhz = 1410.0
CUDAComputeUnits = 108
CUDACoresPerCU = 64
CUDADeviceName = "NVIDIA A100-PCIE-40GB"
CUDADriverVersion = 11.3
CUDAECCEnabled = true
CUDAGlobalMemoryMB = 40536
CUDAMaxSupportedVersion = 11030
CMS_CUDA_SUPPORTED_RUNTIMES = 10.1,10.2,11.0,11.1,...
CMS_NVIDIA_DRIVER_VERSION = 515.48.07



Second matchmaking in HTCondor

11

● For each properly configured GPU slot that joins the Global Pool, the HTCondor 
negotiator will compare job requirements with machine attributes (second 
matchmaking)

○ Any dynamically retrieved GPU property can now be used to filter suitable slots in relation 
to a given workflow

Collector
+

Negotiator

Machine attributes
CPUs = 8
GPUs = 2
CUDACapability = 8.0
CUDAClockMhz = 1410.0
CUDAComputeUnits = 108
CUDACoresPerCU = 64
CUDADeviceName = "NVIDIA A100-PCIE-40GB"
CUDADriverVersion = 11.3
CUDAECCEnabled = true
CUDAGlobalMemoryMb = 40536
CUDAMaxSupportedVersion = 11030
CMS_CUDA_SUPPORTED_RUNTIMES = 
10.1,10.2,11.0,11.1,...

...

Job requirements
RequestGPUs = 1
RequiresGPU = 1
...
Requirements = 
CUDACapability >= 3 && 
CUDARuntime = "11.4" && 
GPUMemoryMB = 8000 && …
...

...
Machine.CUDACapability in Job.CUDACapability
Job.CUDARuntime in Machine.CMS_CUDA_SUPPORTED_RUNTIMES
Job.GPUs <= Machine.GPUs
...



GPU support in the WM system

12

● WM layer acts as interface between 
user requests and the actual job 
creation into the HTCondor schedd 
queues

○ Map user request into a job jdl with 
attributes to be used in both 
matchmaking stages

● Agreement on the introduction of a 
new set of key/value pairs to be 
employed by any GPU workflow

○ mapped into a total of 5 htcondor job 
attributes (plus 3 optional)

GPU support in WMCore and CRAB

https://github.com/dmwm/WMCore/wiki/GPU-Support
https://github.com/dmwm/CRABServer/issues/6989#issuecomment-1277287533


GPU use cases and matchmaking stages 

● With regards to how CMS jobs relate to GPUs, while the situation is evolving, three 
use cases are considered:

○ Job must use GPUs
○ Job can use GPUs
○ Job can only use CPUs 

● Access and use of GPUs under control of two main attributes in the job jdl:
○ RequiresGPU:  Defines whether or not GPU pilots will be requested by the first (GlideinWMS FE) 

matchmaking
○ RequestGPUs: Number of GPU resources to be matched in the second (HTCondor) matchmaking

● The three use cases are covered:
○ RequiresGPU = 1 &&  RequestGPUs>0, will trigger GPU pilot, then match the slot 
○ RequiresGPU = 0 &&  RequestGPUs>0, will not trigger GPU pilots but CAN match already 

available GPU slots. 
■ Need to discuss preference for CPU+GPU over CPU slots

○ RequiresGPU = False &&  RequestGPUs=0, for purely CPU task 
13



Availability of GPUs in CMS SI

14



Advertising GPUs already available to CMS
● Multiple CMS WLCG sites already kindly making their GPU resources available for CMS use
● GPU inventory: SI regularly scanning the Global Pool for GPU resources, collecting their availability 

and properties, then published in the GPU monitoring table
○ Recent (e.g. last 30d) results should inform users about “what is available and where”

15

https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-sub-inf-info-on-gpus?orgId=11


16

Executed a scale and performance test on GPUs in the CMS Global 
Pool

● Injected about 15k test jobs on the Global Pool, targeting any 
available GPU for 24h: match as many GPUs as possible, check 
how many and where they are and what type, etc

● Used a simple TensorFlow multiple (10k x 10k, float16) random 
matrix multiplication script as GPU payload 

● Recorded total execution time, correlated to accelerator 
performance

Results: Achieved a peak allocation of over 150 GPUs in parallel in the 
Global Pool

About 230 distinct opportunistic 
GPUs discovered during the test

Scale test for GPUs in CMS SI



17

Executed a scale and performance test on GPUs in the CMS Global 
Pool

● Injected about 15k test jobs on the Global Pool, targeting any 
available GPU for 24h: match as many GPUs as possible, check 
how many and where they are and what type, etc

● Used a simple TensorFlow multiple (10k x 10k, float16) random 
matrix multiplication script as GPU payload 

● Recorded total execution time, correlated to accelerator 
performance

Results: Achieved a peak allocation of over 150 GPUs in parallel in the 
Global Pool

About 230 distinct opportunistic 
GPUs discovered during the test

Scale test for GPUs in CMS SI

Non-CMS 
OSG sites!



Integration of non-x86 architectures

18



Multi-architecture matchmaking (I)

The CMS SI and WM systems were originally built and deployed assuming the x86_64 standard

● The WM and SI underwent adaptation to allow access and use of other architectures
○ Power9 was the first non-x86 platform available at scale for CMS (at CNAF/CINECA)
○ Initially tested with manually launched pilots (ad-hoc compiled HTCondor startd), no 

singularity container
○ By mid 2022, HTCondor support for ARM (aarch64) and Power PC (ppc64le) CPU 

architectures available
■ Startds added to the GideinWMS pilot factory, can now access these resource types 

with GlideinWMS pilots

● Power9 arch is now fully commissioned and its CMSSW has been physics-validated. Next is 
ARM:

○ CERN granted access to a few ARM machines to be accessed as Grid resources, and 
again at CNAF

○ Ongoing integration and physics validation tests 

● RISC-V architecture by the HL-LHC era?
19



Resource architecture has been turned into a 
configurable parameter, to be used in the two 
CMS SI matchmaking phases:

● Payload jobs describe their resource 
requirements, which may include matching a 
specific or multiple architectures

● Provisioning of the corresponding resources 
via the HTCondor Global Pool

● HTCondor second matchmaking step

20

Multi-architecture matchmaking (II)



Conclusions

21



22

● Resource heterogeneity in HEP computing is a key element moving forward
○ CMS is adapting its WM and SI systems to properly manage new resource types and providers and 

put them to good use 

● Heterogeneous collection of resources: no standard slot definition exists
○ Workload scheduling requires careful description of slot properties and workload requirements for 

effective matchmaking

● With regards to GPUs, still opportunistic but a sizable number and variety already available in the CMS 
Global Pool

○ Detailed inventory of available GPUs produced to promote GPU resource exploitation by CMS users 
○ CMS scientists and central production can now easily use GPUs for their workflows on the 

Grid

● Non x86 CPU architectures integration to CMS computing is ongoing
○ Power9 fully integrated and validated
○ ARM being commissioned

● Challenges ahead
○ Efficient execution of CMS multi-steps jobs on CPU/GPU heterogeneous resources
○ Benchmarking and accounting required for realistic usage at scale in the WLCG context

Conclusions



Acknowledgements

23

US National Science Foundation 
under Grant No. 2121686



Backup Slides

24



Abstract

25

The computing resources supporting the LHC experiments research programmes are still dominated by x86 processors 
deployed at WLCG sites. This will however evolve in the coming years, as a growing number of HPC and Cloud facilities 
will be employed by the collaborations in order to process the vast amounts of data to be collected in the LHC Run 3 and 
into the HL-LHC phase. Compute power in these facilities typically includes a significant (or even dominant) fraction of 
non-x86 components, such as alternative CPU architectures (ARM, Power) and a variety of GPU specifications. Using 
these heterogeneous resources efficiently will be therefore essential for the LHC collaborations reaching their scientific 
goals. The Submission Infrastructure (SI) is a central element in the CMS Offline Computing model, enabling resource 
acquisition and exploitation by CMS data processing, simulation and analysis tasks. The SI is implemented as a set of 
federated HTCondor dynamic pools, which must therefore be adapted to ensure access and optimal usage of alternative 
processors and coprocessors such as GPUs. Resource provisioning and workload management tools and strategies in 
use by the CMS SI team must take into account questions such as the optimal level of granularity in the description of 
the resources and how to prioritize CMS diversity of workflows in relation to the new resource mix. Some steps in this 
evolution towards profiting from this higher resource heterogeneity have been already taken. For example, CMS is 
already opportunistically using a pool of GPU slots provided mainly at the CMS WLCG sites. Additionally, Power 
processors have been validated for CMS production at the Marconi100 cluster at CINECA. This contribution will describe 
the updated capabilities of the SI to continue ensuring the efficient allocation and use of computing resources by CMS, 
despite their increasing diversity. The next steps towards a full integration and support of heterogeneous resources 
according to CMS needs will also be reported.



GPU scale and performance test

26



GPU scale and performance test

● Execution time as a function of site and GPU type: a factor 10x variance in 
results observed overall 

27



Remaining challenges in the use of GPUs

28



Further Challenges in the use of GPUs

● Policy for GPUs in StepChain workflows?
○ Multi-step jobs (multiple cmsRun with different settings), not all of them capable of making use of the 

GPUs

● Benchmarking of GPUs (as soon as HEPScore is available)
○ A requirement for pledge definition and resource acquisition
○ Predictable workflow runtimes, a key parameter for an efficient matchmaking of jobs to slots

■ Hard now because of high heterogeneity among GPUs
■ Even our simple script found a 10x factor in execution time!

● GPU usage accounting
○ Also requires GPU resource benchmarking
○ Could use HTCondor’s GPUsAverageUsage as proxy

■ Cron job uses the NVIDIA driver and tools libraries to query statistics on all of the GPUs
■ Generate usage report back to the slot info and payload job classad

29


