CMS,
\' Ry
Data Analysis Framework \\ <

RenderCore — a new WebGPU- based
rendering engine for ROOT-EVE

Ciril Bohak'?, Dmytro Kovalskyi®, Sergey Linev?, Alja Mrak Tadel®,
Sebastien Strban', Matevz Tadel°, Avi Yagil®

1. University of Ljubljana, Faculty of Computer and Information Science

2. King Abdullah University of Science and Technology, Visual Computing Center
3. MIT

4. GSI

5. UCSD

CHEP 2023

Overview

e One-slide history:
o ROOT Event visualization: TEve — REve
o RenderCore & REve

e REve vs. THREE.js vs. RenderCore

o motivation (issues with THREE.js)
o transition
o implementation highlights

e Near future: RenderCore with WebGPU

e C(Conclusion

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

Story of REve and RenderCore |.

e ROOT-EVE - REve (aka Eve-Web)

o Rewrite of TEve for the web & ROOT-7
m Uses OpenUI5 & JSRoot
m Driven by CMS FireworksWeb development
m Several high-level Fireworks features moved into REve:
e physics collections,
e jtem filtering, and
e table-views

e REve History:

o CHEP 2018 (Sofia) — proof of concept: server-client core, data exchange, remote method execution.
o CHEP 2019 (Adelaide) — functional prototype of CMS FireworksWeb

o End of 2021: Deployed Event-display service for CMS; servers at CERN and at UCSD
m Access any CMS data through AAA (through XCache), from CERN EOS and CERNBox

e REve is the core technology used for CMS visualization
o TEve application still supported for exotic use-cases: P5 online, geometry browser

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023 3

Story of REve and RenderCore |II.

e JSRoot uses THREE.js for 3D plots & geometry

o "inherited" into REve — a bunch of issues, to be discussed ...

e RenderCore — lightweight deferred rendering WebGL 2.0 framework in JS

o Research-oriented render engine developed at the U. of Ljubljana, Department for Computer
Graphics and Multimedia

o Also used for collaborative visualization of medical data — Med3D

e RenderCore = REve timeline
o 2018 — predecessor Med3D presented at HSF Workshop in Naples

o 2019 — expression of interest from our side, some in-depth explorations through 2020
o Mid 2021 — extraction of Med3D rendering engine + cleanup — RenderCore!

o End of 2022 — RenderCore is the default render engine for REve (post root-6.28)

o 2023/24, in progress — RenderCore uses WebGPU

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

& Shared with me - Google Drive X RelValMuMureco.root [4/10] X & Photos - Google Photos X ‘ + v

<« C @ fireworks.ucsd.edu:10018/win1/2token=PIPkXzTZbDjNyOL7 how o * 0@ :
(H Quit Config v Edit Subscribe v InvMassDialog Run | 1 Lumi = 1147 Event | 57311 CMSSW Client Alive Log Help v
1« 4 D » AutoPlay: -@ EnableFilter FilterDialog RelValMuMureco.root 4/10

+) [x
Add Collections

> IECal [7]
> /HCal [2]
> Widets Z]
> IMuons =
> W Tracks =
> ZIElectrons -
> Vertices Va
> K/ICSC-segments -
> /IPhotons -
> WIMET (7]
> v/ BeamSpot V4
Table P || &)X
\ I Choose Collection:
g i Jets . [Edit table Y
[' Idx Filtered pT eta phi emf
0 1 37.7 4.231 1.300 0.296
1 1 30.4 -2.946 -1.314 0.232
2 1 288 3.063 2.074 0.276
3 1 271 -2.959 1.421 0.434
4 i 2 27.0 4.186 -2.648 0.430
5 1 26.1 -4.461 0.018 0.390
6 1 25.9 3.712 -1.043 0.426
7 1 241 -3.835 -2.687 0.459
8 1 239 -2.767 2.779 0.046
9 1 229 3.981 -0.156 0.371
10 1 218 2921 -0.175 0.222
Jets Editor i X 1 1 213 -4.561 -1.039 0.357
12 1 213 -2.807 2.097 0.085
Y| RorSelf 13 1 212 -3.767 0.706 0516
% MainColor 14 1 21.0 3.872 -1.734 0.408
15 b 2 20.8 -4.965 1.158 0.380
i-pt0>20 16 1 205 -2.847 -2.818 0.041

THREE.js grievances: high-level

e TEve used custom, low-level OpenGL-1.x engine / scene graph (RootGL)

o Developed in sync with TEve as needed to support CAD-like features of EVE
m One gets spoilt by this flexibility. Several advanced features not available in standard rendering engines.
o Migration to a "modern" OpenGL was never even considered — would require a major rewrite
o REve = migration to both a modern GL and to a server-client architecture (geometry serialization)

e Global / sociological issues with THREE.js

o Large project with a lot of users and a lot of functionality & features REve does not need
m Tight integration from API classes — rendering pipeline — shaders

o Very hard to introduce custom changes that spawn across the whole framework ...
m Changes need to go into several places and coexist with other advanced/exotic features we do not need.
m They are hard to implement as one needs full chain understanding.

o ... and impossible to get them included in the main distribution / repo }

| actually sympathize

m What we need is rarely used (specific to CAD-like nature of Eve) with this attitude

m Would make things harder to support (Who are you, anyway?)

o Release and low-level change cadency is rather large
m Guaranteed (to some extent) API class interface and functionality — but back-end can change significantly.
m For REve we really prefer complete stability (backport things if needed). E.g., RootGL stable since ~2008.

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

THREE.js grievances: technical / functional

1. Support for morphable memory-optimized instantiated objects

o E.g. polygons or polyhedra with some varying properties: position, angle(s), scale(s), color
m High-granularity calorimeter hits
o Requires support from API classes, render-driver and shaders (including custom shader input)

2. Picking / selection / highlight
o THREE uses ray—mesh intersection; this does not work for:

m points (sprites) / lines, esp. at close-up views
m instanced objects; does not work at all when geometry morphing / transformation is done in vertex shader

3. Multiple subsets of highlighted objects and/or sub-objects

o Requires low-level renderer and render-buffer control (juggling) for optimal implementation

4. 3D lines of arbitrary thickness
o Complete pain in (Web)GL; GL-1.x-style thick lines only supported on few architectures
o Especially when you want 2. and 3. above to work

We had workarounds for some of those ... to some extent ...

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

RenderCore — motivation for adoption

e Most of the stuff on previous two slides ... but:

o It doesn't mean things were easy ... they were for sure easier and, in fact, possible.
o Will discuss some of them in more detail

e Collaboration!

o Itis of great help to be able to discuss details of APIs and implementations
m RCore folks do the low-level core changes as needed
m ROOT folks get to learn the art of low-level WebGL and are able to provide back meaningful extensions

o Further avenues: PR, VR, advanced rendering techniques; interesting for other parts of ROOT
e Beautification: lighting models, post-processing / filtering
Release and versioning at our own pace

Follow state of the art in web graphics
o Early transition towards WebGPU

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

REve@RCore implementation highlights |.

Object & sub-object picking with rendering to off-screen buffers
e Gives pixel-perfect results: if it is under mouse = it gets picked

e Implemented via dedicated shaders (or code paths) that "render” object ids (uint)

o automatically assign object ids during pre-render traversal

o use limited viewport, 32x32 around pick (mouse) position

o z-depth is also extracted (R32F) — for placement of annotations, camera center placement
O

sub-object / instance picking implemented in a similar way:
m single object is rendered, using instancelD or vertexID for output color, as required in shader

e Requires support in MeshRenderer and render-driver (custom REve component)

Highlighting / outlines based on a subset of G-buffer components

e Detects selected object edges and sudden changes in normal direction
o Outlines objects and also edges to aid in shape recognition

e Requires: z-depth + view-space normals + view-direction vectors

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

ucsd.edu;

12 @UCSDfw @CERNW (Jroot P§ ()me P PARKING [Fireworks RCore iss... Y [8] Career Connection

* background

30.whies W
#oh_whitees

Rho_WhitesG I
Close Contrals

REve@RCore implementation highlights |l.

Instanced objects

e Needed for display of digits / hits / towers / cylinders / cones
o We need: position, scaling, color; limited ability to rotate things, if at all

e "Standard" instancing uses the same mesh and full 4x4 matrix per instance
o Can save significant amount of memory and transfer less data by reducing the per-instance data.
o Hard to implement instance picking and instance outlining without duplicating objects.

e For WebGL instance-data needs to be packed into "data" textures

o Transferred from the server to GPU as a blob. However, one has to coordinate three things:
m data packing on the server side (hard to mix floats and ints / shorts / bytes),
m texture format / size interpretation in JS/WebGL, and
m instance stride and component interpretation in the shader code.

e Can potentially also be used for geometry rendering
o ...to be explored

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023

Candidates11_pfTICL Editor »

1

CMS HGCal:

O(1M) thick hexagons (24 triangles)
Interactive refresh rate on 10
year-old hardware (GTX 970)

Near future: WebGPU & WebAssembly

e WebGPU — RenderCore implementation in progress

o Motivation:
m Performance
m Ability to carry memory blocks and data-structures from server to GPU without repacking or reinterpretation
m Compute shaders / programs

o RCore transition happening now — in summer 2022 it seemed everything will happen faster
m WebGPU implementation in most browser/OS combos getting out of beta (e.g. Chrome-113, May 2, 2023).
m Wil follow up and transition when browser support is solid, especially on linux.

o When to Release REve @ WebGPU — when to drop WebGL
m We were hoping to converge on a single backend — and implement some advanced features only once

e \WebAssembly offers additional options for optimization

o Currently, processing is done at the server (complex part) or in shaders (lightweight things)
m balance between memory / data-transfer volume / CPU / GPU usage
o WASM can be useful for bulk calculations within the scene graph processing

m Lightweight: calculating normal / model-view matrices, view / clip plane culling — wasm supports SIMD!
m Full-scale: C++ renderer that is used both on the web and natively.

o We have spent some time trying it out — requires rather elaborate memory mapping / management

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023 15

Conclusion

e RenderCore was selected as the rendering engine for ROOT-Eve

o This allowed us to reclaim advanced functionality and low-level control over object-data
representation and rendering pipeline.

o Learning new things and implementing advanced functionality was reasonably easy with the help
of graphics professionals.

e REve and RenderCore are used as the core visualization technologies for CMS

e Transition of RenderCore to WebGPU is ongoing
o Proceeding in sync with finalization of the APl and implementation in browsers.
o This will allow us to perform final optimizations of REve ...
o ..and provide ROOT event visualization with a state of the art 3D graphics.

e \We are welcoming further collaboration

o Both in the context of REve framework ...
o ... as well as in RenderCore and, potentially, other graphics endeavours.

M. Tadel, RenderCore — a new WebGPU-based rendering engine for ROOT-EVE, CHEP 2023 16

