
Geant4 electromagnetic physics for Run3 and Phase2 LHC

expt. data QE-Geant4 Geant4 (pol.) Geant4 (unpol.) 1.4 1.4 1.50 -100 -50 0 50 100 150 Δφ (degrees)

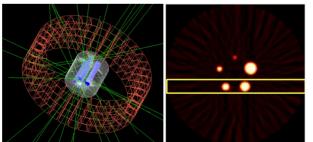
Daren Sawkey, Varian Medical Systems on behalf of the Geant4 Collaboration daren.sawkey@{varian.com, cern.ch}

Primary authors: V. Ivantchenko, J.Hahnfeld, M.Novak, L.Pandola, D.Sawkey

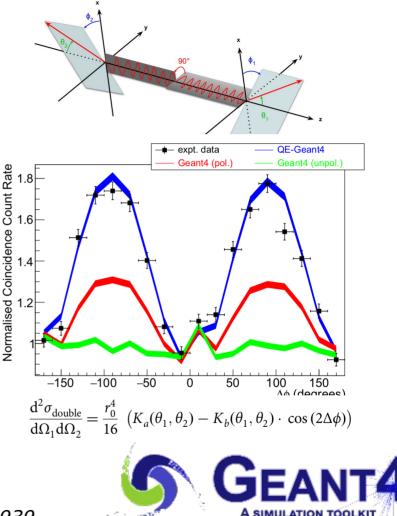
CHEP, May 11, 2023

Outline

- Physics improvements
 - Accuracy
- Tracking improvements
 - Speed
- G4HepEm
 - R&D project
- Technical enhancements (not going to talk about today)
 - Code clean-up, obsolete classes removed

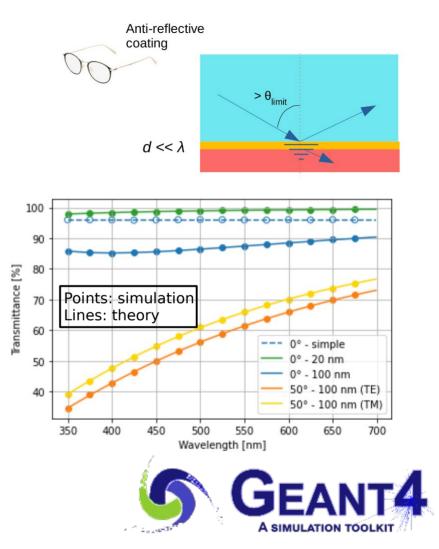

Physics improvements

- New process
 - Muon pair production by muon
- Enhanced processes
 - Positron annihilation entanglement
 - Optical thin film interference phenomena
- Improved accuracy or speed
 - EPICS2017 photon database
 - Fluctuation model
- Updated physics lists
 - Penelope e- ionisation
 - Lindhard-Sorenson ion ionisation



Quantum entanglement

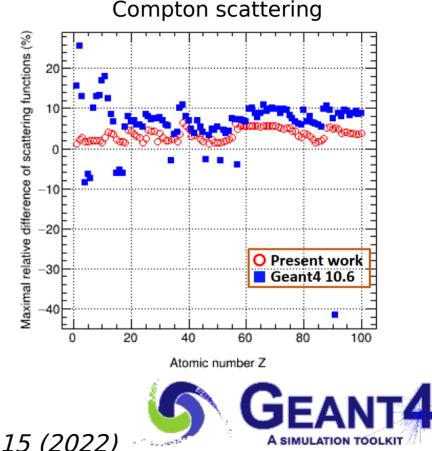
- Positron annihilation produces entangled photons (polarisation)
- Now enabled in Geant4
- Validated by double Compton scattering cross section measurements
- Potential applications for removing in-patient scatter



Watts et al, Nature Comm 12, 2646 (2021); arxiv:2012.04939 CHEP 2023 Daren Sawkey – Geant4 Electromagnetics

Optical thin film coatings

- Interference phenomena at interfaces of thin coatings
- Simulate in Geant4 with CoatedDielectricDielectric boundary process
- Specify thickness, refractive index of thin film
- Simulation agrees with theory
- Try example OpNovice2 with coated.mac macro

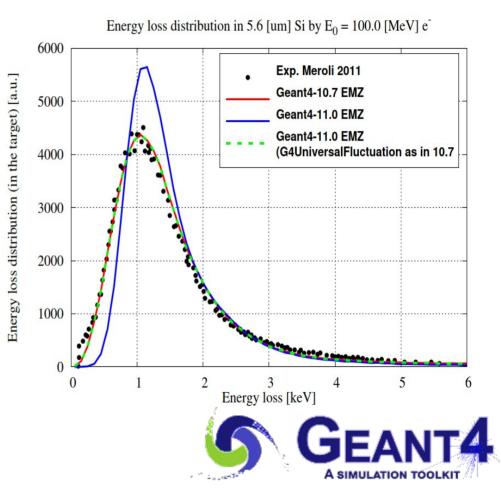


Laurie Cappellugola et al, Aix Marseille Univ

CHEP 2023

Implementation of EPICS2017 for photons

- For Geant4 11.1 this is the default for the G4EmLivermore models
- More data points
- Linear interpolation (rather than logarithmic)
- Better agreement with XCOM



Zhuxin Li et al., Physica Medica 95, 94-115 (2022)

Daren Sawkey - Geant4 Electromagnetics

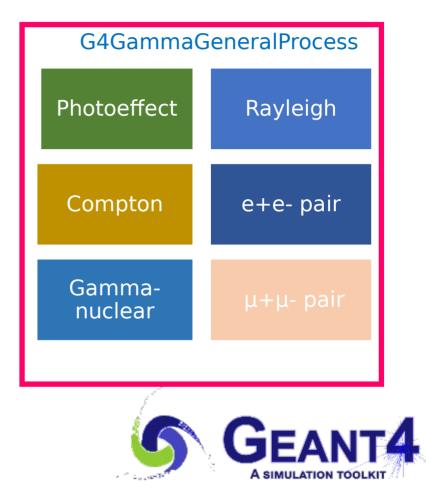
Fluctuations

- Choice of model for fluctuation
 - G4UrbanFluctuation
 - most accurate model
 - G4UniversalFluctuation
 - Opt1, Opt2 default
 - Save 1-2% simulation time but less accurate for thin targets
 - G4LossFluctuationDummy
 - no fluctuations
 - Or own concrete class

Physics list modifications

- G4EmStandardPhysics
 - Gamma general process
 - G4UrbanFluctuation
- G4EmStandardPhysics_option1
 - G4TransportationWithMsc
- G4EmStandardPhysics_option3
 - Gamma general process
 - G4UrbanFluctuation
 - G4LinhardSorenson ion ionisation model
 - MSC RangeFactor = 0.03

- G4EmStandardPhysics_option4
 - Gamma general process
 - Penelope (instead of Livermore) ionisation for e- below 100 keV
 - G4UrbanFluctuation
 - G4LinhardSorenson ion ionisation model
- G4EmLivermorePhysics
 - G4UrbanFluctuation
 - G4LinhardSorenson ion ionisation model
 - EPICS2017 gamma cross sections
- G4EmPenelopePhysics
 - G4UrbanFluctuation
 - G4LinhardSorenson ion ionisation model


Tracking improvements

- General goal is to reduce simulation time by reducing number of step length calculations
 - Fewer steps
 - or fewer calculations per step
- Physics is unchanged
 - As always, it is recommended for users to test as well
- Several approaches

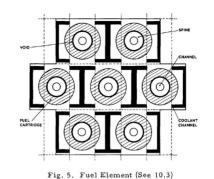
Gamma general process

- Geant4 kernel sees only Transportation, and 1 physical process, for gamma
- 6 gamma interactions combined into 1 interaction length
- At interaction point, concrete process selected randomly according to partial cross sections
- 5% reduction in CPU usage (HEP applications)
 - Strongly depends on geometry, cuts
- Enabled by default in 11.1 (present since 10.5)
 - Disable with UI command
- EPJ Web Conf. 245 (2020) 02009

Combined MSC/transport

- Combine multiple scattering and transportation into one process
- Handle msc steps internally by switching between MSC and transportation until a real, discrete interaction occurs
- Provides identical physics but fewer steps
- New G4TransportationWithMsc process, released with Geant4-11.1
- Enabled in G4EmStandard_option1
- For 10 GeV e- with TestEm3 example, 50% fewer charged particle steps; 16% performance gain
- /process/em/transportationWithMsc
 MultipleSteps Or Enabled

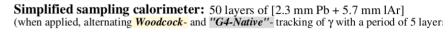
Jonas Hahnfeld & Mihály Novák

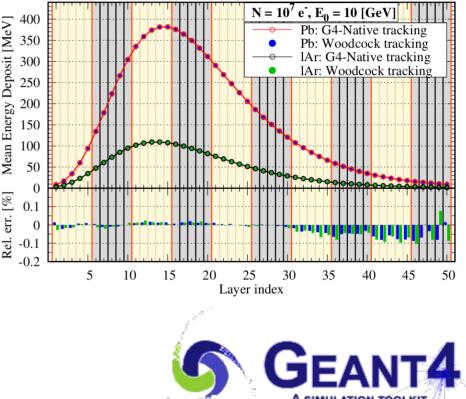

10 GeV e-		default	Msc+Trans (multiple internal steps)
E_{dep} [MeV]	$PbWO_4$	6729.5	6731.3
	lAr	2567.0	2564.5
#secondary	γ	4.27e+03	4.28e+03
	e^-	7.70e+03	7.70e+03
	e^+	429	429
#steps	charged	35975.5	18467.9
	neutral	40465.5	40463.8
Rel. perf. gain		0	16.7 [%]

Woodcock tracking

- In a standard simulation particle stops at each volume boundary
 - Interaction lengths recomputed at each boundary
- Becomes time-intensive for geometries with many small volumes
- Woodcock tracking aims to reduce number boundary crossing steps
- Total macroscopic cross-section constant along step
 - Largest across all materials
- Relevant for medical simulations (CT)

Jonas Hahnfeld & Mihály Novák


Woodcock (1965) nuclear fuel rods



Woodcock tracking (2)

- Physics is not altered
- 10 GeV e- results:
 - 75% reduction in neutral steps
 - 10% reduction in simulation time
 - 16-18% reduction in ATLAS simulation time
- Important convention, that particles stop at boundaries, does not hold!
 - May be relevant for scoring, e.g. surface flux
- So far, not part of main Geant4 repository
 - Planned to be part of G4HepEm
 - Can be shared as example

Jonas Hahnfeld & Mihály Novák

Daren Sawkey - Geant4 Electromagnetics

G4HepEm

- Geant4 EM physics R&D project
- Goal is to reduce computing performance bottleneck experienced by HEP simulations
 - Physics modelling libraries
 - e⁻/e⁺ and γ transport (EM shower)
 - ~ keV to 100 TeV
- Alternative stepping, highly specialised for particle types
- Gateway for GPU use for EM physics
 - E.g., all physics data on main device memory

https://github.com/mnovak42/g4hepem https://g4hepem.readthedocs.io/en/latest/index.html

Thank you!

Daren Sawkey - Geant4 Electromagnetics