
Surface-based GPU-friendly geometry
modeling for detector simulation

Andrei Gheata (CERN), for the VecGeom & AdePT projects

26th INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY &
NUCLEAR PHYSICS (CHEP2023) - Norfolk, May 8-12, 2023

VecGeom

A
B

C D

Geant4

VecGeom: navigation back-end for Geant4

► VecGeom: efficient navigation algorithms
behind particle transport simulation

● multi-purpose 3D constructive solid modeller
● Independent of the transport simulation toolkit
● Targeting single and multi-particle workflows on

multiple CPU back-ends (scalar and SIMD) but
provides also GPU support

► Library evolution
● Production: committed long-term CPU scalar

support
● GPU simulation projects: AdePT and Celeritas

▹ Actively improving the GPU support

2

G4Navigator

UnplacedVolume_t

state = A/B/D
(“touchable” in Geant4)

A B

C
D G4UAdapter

adapts Geant4 solid
type to
corresponding
VecGeom type

https://indico.jlab.org/event/459/contributions/11427/
https://indico.jlab.org/event/459/contributions/11818/

Current solid modeling on GPU
► Several GPU unfriendly features

● Virtual dispatch
● Recursive code (relocation)
● (Very) different algorithm complexity

► AdePT project: geometry complexity
worsens performance → main bottleneck

● Longer stalls within warps for the same SM
compute - divergence limiting warp-level
concurrency

● Large stacks & register-hungry code limiting the
number of warps running concurrently w/o dumping
registers to memory

3

CMS
TestEm3

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

warp stalls for the
same SM compute
& memory ops

TestEM3 = sampling calorimeter 50 layers
CMS = full CMS_2018 geometry

very different code
complexity

slowdown

Bounded surface modeling - a different
model friendly to GPUs
► 3D bodies represented as Boolean

operation of half-spaces*

● First and second order, infinite
● Just intersections for convex primitives

▹ e.g. box = h0 & h1 & h2 & h3 & h4 & h5
● Similarities with the Orange model

▹ Bootstrapped by collaborating with the
Orange team

► Storing in addition the solid imprint
(frame) on each surface: FramedSurface

● Similarities with detray (ACTS)
● Frame information is redundant

▹ allows for more efficient navigation
overall, using pre-computed information

4

6x (planar half-space +
window frame)

h0

h1

h2 h3

h5

h4

https://github.com/celeritas-project/celeritas/tree/develop/src/orange
https://github.com/acts-project/detray

Motivation for surface modeling

5

Surface
Navigator

Optimizer
(BVH/voxel)

Half-space
dispatcher

Planar

Second
order

Frame
dispatcher Reduction

state = /Lvl_0/Lvl_1/…

Fast mask-like
checks

using frame
bounding boxes

More effective optimizations
due to framed surface
bounding boxes

new state,
distance, safety

Sequence for typical navigation queries volume
hierarchy

Window

Ring

CylPhi

Triangle

Fast solvers

compact
flattened
indexed data
structures

Simpler code with faster
divergent sections

specific to the
bounded model

Portable code with non-virtual
dispatching and
non-recursive algorithms

More efficient particle relocation

► In Geant volumes can share common surfaces
● Define “common surfaces” as transition boundaries

between volumes, pre-computed and deduplicated
● Volumes contribute with frame imprints on each side

► Locating the particle crossing point on the
frames on each side defines a relocation
procedure

● More efficient linear search, involving only a limited set of
neighbors and not all daughters of a volume

6

common surface

z

x

y

exiting
side

entering
side

left-side view right-side view

track

A/B →C/D

Relocation performance

7

~Nvol_per_level

~Ntouching_siblings

solids: loop
over objects at
the same level

loop over
touching framed
surfaces

Scaling for the Boolean implementation
► Current implementation validated

for correctness against the
VecGeom solid model

● Infix logic expression evaluation
● Tested union of up to 150 layers of disks

subtracting a box, more exhausts CUDA
stack space for the solid approach

► Un-optimized version so far, but
scaling looks good

● 2x slower for 5 components, 2x faster
for 50 components on GPU

● more details in the backup

8

Ray-tracing example traversing all volume
boundaries until exiting the setup

Header library with transparent usage

9

GeoManager

Model
converter

SurfData_t
transformations
surface data
frame data,
candidate_lists

surface data storage
(index-based)

Surface
navigator

__host__ __device__

GPUCPU

SurfData_t
transformations
surface data
frame data,
candidate_lists

copy to GPU

Same navigation
functionality as for the
solid model

visitor

Preliminary performance

► Unit tests available for correctness checking against VecGeom solid model
● Box, tube, trapezoid, polyhedron, Boolean solids
● TestEm3 - a simple layered calorimeter made of box slabs

► Ray-tracing benchmark, working with generic GDML input (supported solids
only)

● Testing full navigation functionality on CPU and GPU
● Validated & benchmarked against existing VecGeom solid navigators

► Results (compared to solid looping navigation) for trackML setup
● Safety computation: ~2x slower on CPU, ~2x faster on GPU
● Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
● Memory: ~1 kByte per “touchable” volume

10

trackML

Integration in AdePT GPU prototype
► Optional usage of the surface model

in AdePT example
● No relevant changes needed other than

triggering the model conversion and the
navigator type

► Sampling calorimeter simulation
● block of Pb + LAr box layers (w/ constant

Bz field)
● 10 GeV electrons shot towards the

calorimeter along X axis

► Numerical divergence small and
understood

11

BVH Loop surf

no field 152s 162s 156s

Bz=1T 194s bug 184s

Outlook
► As GPU simulation gains in weight and geometry is on critical path,

VecGeom develops dedicated surface-based GPU support
● Surface model enriched with solid frame information
● Collaboration with Celeritas/ORANGE team on commonalities and convergence paths
● Transparent implementation, better work-balanced and friendlier to GPU

► Currently implemented all the features required by particle transport, for a
subset of solids

● Integrated with AdePT, already usable with very simple setups
● Promising preliminary numbers

► Coverage and optimizations are essential for testing realistic setups
● Having the full set of supported 3D solids
● Working on alternatives to reduce the memory footprint
● Implementing BVH acceleration structures

12

Backup

13

Why use frames ?

14

volumes/unbounded
surfaces, bbox optimized

bounded surfaces, normal-optimized,
no bounding box optimization

bounded surfaces,
bounding box optimized

3 solid / 18 unbounded
surface checks

3 framed surface checks

No virtual crossings: can greatly
reduce candidates to be checked

High potential for work reduction
compared to solid or unbounded
models

Boolean evaluation for more complex solids

15

► Cut tube: tube & wedge
● tube = h0 & h1 & h2

● wedge = (𝝋 < 𝜋) ? h3 & h4 : h3 | h4

► Inside: Evaluation of the Boolean expression
(half-space information only)

● Inside(h0 & h1 & h2 & (h3 | h4))

► Distance/Safety: Ignore Boolean expression for
primitives (real surfaces)

● ToIn/ToOut inferred from the start state (surfaces
crossed from the wrong side ignored)

● Distance(hi) < dmin && frame.crossed
● Safety reduction takes into account convexity

► Boolean solids: complete evaluation of Boolean
expression needed

● The Boolean expression can generate virtual framed
surfaces

h0

h1

h2

h3
h4

𝝋

Conversion of existing solids

► Any solid surface can be made from
predefined surface & frame types

● Conversion transparent to user code

► Only box, tube, trapezoid and
polyhedron for now

● And their Boolean combinations

16

x

y
z

UnplacedSurface: (z = 0)
Frame: abs(x)<dx && abs(y)<dy

x

yz

n

n
CreateLocalSurface(

 CreateUnplacedSurface(kPlanar),

 CreateFrame(kWindow, WindowMask_t{box.y(), box.z()}),

 CreateLocalTransformation({box.x(), 0, 0, 90, 90, 0}));

90o

2·box.y()

2·box.z()

1 2

translate box.x()

3

see full box implementation here No custom navigation needed per solid
type once converted to surfaces

https://gitlab.cern.ch/VecGeom/VecGeom/-/blob/surface_model/VecGeom/surfaces/BrepHelper.h#L1006-L1033

Logic evaluation for distance queries
► Common approach for Distance and Safety queries

● Mix in the search all surfaces visible from the current state
(Boolean and regular)

● Negated surfaces have flipped associated half-space
● Apply a std::min reduction on the distance to the surface

half-space, excluding “far-away” candidates

► Distance computation
● Validate crossing point against the frame information
● If this hits a Boolean surface, exclude virtual solutions by

checking the logic expression

► Safety computation
● Use frame information to correct the safe distance
● Use a stack-based infix logic evaluation using min/max as

reduction (correct only if surfaces are ‘real’)
17

min(safeA, safeB) max(safeA, safeB)

A | B A & B

The complex cases: Boolean solids
► Composite solids support intersection (&), union

(|) and subtraction (&!) of arbitrary number of
components

► Building logic expressions in terms of surface id’s,
using De Morgan’s rules

((6 & 7 & 8 & 9) & (10 & 11 & 12 & 13 & 14 & 15)) |
((16 & 17 & 18 & 19 & (20 | 21)) & (!22 | !23 | !24 | !25 | !26 | !27))

► Expression simplification using Boolean algebra
rules, keeping left operand the simplest to
evaluate for short-circuiting

(6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15) | (16 & 17 & 18 & 19 & (20 | 21) & (!22 | !23 | !24 |
!25 | !26 | !27))

18

(tube1 & box1) | (tube2 & ! box2)

tube1

box1

tube2

box2

More implementation details in the backup

Logic evaluation

► Boolean operations can be
short-circuited

● true | any = true, false & any = false

► Infix stackless parsing for Inside
evaluation

● Inserting jumps exiting the current scope

19

Randomly generated Boolean expression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a & b) | (c & ! d)

(a & 5 b) | 15 (c & 14 ! d)

