# Machine Learning for Ambiguity Resolution in



Laboratoire de Physique des 2 Infinis



Acts Corentin Allaire Hadrien Grasland David Rousseau Françoise Bouvet





**Corentin Allaire** 

### Acts : A Common Tracking Software

- Open source tracking software: <u>https://github.com/acts-project/acts</u>
- Experiment independent toolkit :
  - ATLAS, ALICE, BVG, FASER
  - LDMX, sPHENIX, EIC, ...

#### **Testing environment** for new tracking algorithms:

- Open Data Detector (ODD) :
  - Virtual detector : benchmarking
  - Based on the Track ML challenge
  - Full silicon design (similar to ATLAS ITk)
  - Realistic detector material
- Used in a full tracking chain
   Tracking performances evaluation
- Excellent environment for developing/testing machine learning based algorithms





- After track reconstruction : many tracks are duplicates (same associated truth particle)
- Fake tracks : combination of arbitrary hits (different truth particles)
- Ambiguity solver : remove both and handle hits shared by multiple tracks
- Implemented in Acts : Greedy Solver (decent but is relatively slow)
  - Select tracks with too many shared hits (> 2 in practice)
  - Remove the tracks with the highest relative shared hits
  - Recompute shared hit and repeat
- Classification problem : excellent opportunity for a ML-based solution in Acts



- After track reconstruction : many tracks are duplicates (same associated truth particle)
- Fake tracks : combination of arbitrary hits (different truth particles)
- Ambiguity solver : remove both and handle hits shared by multiple tracks
- Implemented in Acts : Greedy Solver (decent but is relatively slow)
  - Select tracks with too many shared hits (> 2 in practice)
  - Remove the tracks with the highest relative shared hits
  - Recompute shared hit and repeat
- Classification problem : excellent opportunity for a ML-based solution in Acts



- After track reconstruction : many tracks are duplicates (same associated truth particle)
- Fake tracks : combination of arbitrary hits (different truth particles)
- Ambiguity solver : remove both and handle hits shared by multiple tracks
- Implemented in Acts : Greedy Solver (decent but is relatively slow)
  - Select tracks with too many shared hits (> 2 in practice)
  - Remove the tracks with the highest relative shared hits
  - Recompute shared hit and repeat
- Classification problem : excellent opportunity for a ML-based solution in Acts



- After track reconstruction : many tracks are duplicates (same associated truth particle)
- Fake tracks : combination of arbitrary hits (different truth particles)
- Ambiguity solver : remove both and handle hits shared by multiple tracks
- Implemented in Acts : Greedy Solver (decent but is relatively slow)
  - Select tracks with too many shared hits (> 2 in practice)
  - Remove the tracks with the highest relative shared hits
  - Recompute shared hit and repeat
- Classification problem : excellent opportunity for a ML-based solution in Acts



- After track reconstruction : many tracks are duplicates (same associated truth particle)
- Fake tracks : combination of arbitrary hits (different truth particles)
- Ambiguity solver : remove both and handle hits shared by multiple tracks
- Implemented in Acts : Greedy Solver (decent but is relatively slow)
  - Select tracks with too many shared hits (> 2 in practice)
  - Remove the tracks with the highest relative shared hits
  - Recompute shared hit and repeat
- Classification problem : excellent opportunity for a ML-based solution in Acts





- Tracks from the same particle should share hits
   shared hit based clustering :
  - Select leading track for cluster : most hits, no hits shared with existing cluster
  - Hits shared with a leading track : add to the cluster





- Tracks from the same particle should share hits
   shared hit based clustering :
  - Select leading track for cluster : most hits, no hits shared with existing cluster
  - Hits shared with a leading track : add to the cluster





- Tracks from the same particle should share hits
   shared hit based clustering :
  - Select leading track for cluster : most hits, no hits shared with existing cluster
  - Hits shared with a leading track : add to the cluster





- Tracks from the same particle should share hits
   shared hit based clustering :
  - Select leading track for cluster : most hits, no hits shared with existing cluster
  - Hits shared with a leading track : add to the cluster
- Other clustering approaches tested : DBScan
  - Pre-cluster track (still need shared hit clustering after)
  - Slight efficiency increase but 50% slower
  - Available in Acts but not shown today



Cluster Tracks together

**Neural Network**: Score each track, keep highest score per cluster :

- Three layers NN, used for ranking
- Use 8 track variables as input
- One score per track Select the best one

#### Advantages :

- No parameter tuning, only a short training
- Available in Acts vis Onnxruntime



#### 8 May, 2023

#### **Corentin Allaire**

### **Ranking Neural Network**

Goal : one score per track, highest for the good one

- Training without clustering 
   use truth matching instead
- Compute one loss per truth particle
- Use a Margin Ranking Loss :

$$loss_{part} = \frac{1}{N_{tracks}} \sum_{max(0, x - y + margin)}^{tracks}$$

- x: track score; y: good track score; margin = 0.05
- If  $score_{bad} < (score_{good} margin)$ , then loss = 0 Else, loss = score difference minus the margin
- Try to separate the good and bad scores by at least a margin



Part1 Part2 Part3 Part4

### **Performances : definition**

- Full tracking chain with the ODD in Acts 
   Compare the Greedy Solver and the ML Solver
- Geant4 + Pythia simulation of 1000 ttbar events (+ 1000 for training)
- Timing measured on a local server I focus on ratio more than absolute value
- Only consider tracks with ≥7 measurements

#### **Definition :**

- Good track: for a truth particle, track with the most truth match measurements, then fewer outliers, then the smallest chi2
- **Duplicate** : > 50% truth-matched measurements
- **Fake**: < 50 % truth-matched measurements

### **Performances : Efficiency**

- Reference : output of the Acts Combinatorial Kalman Filter (CKF)
- Rates are with respect to the number of tracks at the current step
- Efficiency (good tracks) : Fraction of the original good tracks still present
   Quality of the selection (ranking network)
- Efficiency (truth tracks) : Fraction of the original truth particles still present
   Quality of the clustering

|                           | Number of<br>tracks | Number of<br>truth<br>particles | Efficiency<br>(good<br>tracks) | Efficiency<br>(truth<br>tracks) | Duplicate<br>Rate | Fake Rate | Solver<br>speed<br>[ms/event] |
|---------------------------|---------------------|---------------------------------|--------------------------------|---------------------------------|-------------------|-----------|-------------------------------|
| CKF                       | 7995                | 834.7                           | 100 %                          | 100 %                           | 89.5 %            | 0.06 %    | 0                             |
| CKF +<br>Greedy<br>Solver | 823.6               | 821.4                           | 81.5 %                         | 98.4 %                          | 0.17 %            | 0.10 %    | 184                           |
| CKF + ML<br>Solver        | 811.7               | 810.7                           | 84.2 %                         | 97.1 %                          | 0.05 %            | 0.06 %    | 41.2                          |

### **Performances : Efficiency**

- Slightly worst efficiency with the ML Solver
   Effect consistent across the full detector
- Outperform the Greedy solver in duplicate removal in the forward region
- Perform constantly across the entire detector range





### Summary

- ML Ambiguity solver: Combine clustering and a Ranking neural network
- The ML solver shows great performances: ~5 time faster than the classical one and similar performances
- Available right now in Acts with an example to run it with the ODD, can be tested by any experiment using Acts

### Outlook

- Fine-tuning of the Clustering and the Network
- Generalisation to seeds: Select the most promising seed before track finding
   potential significant speedup

## BACKUP

### Shared hits based clustering

- Idea : 1 cluster = 1 truth particle
- Still needed in the DBScan case to create a sub-cluster with hits-sharing tracks
- Based purely on unordered\_map, the speed shouldn't decrease with the number of tracks
- 1 Cluster ~ 1 track with a large number of measurements (More measurements 
  , better track)
- Add track to the cluster if they share a hit with the primary track



### **DBScan clustering**

- Idea : 1 cluster = 1 truth particle
- sklearn in Python; mlpack in C++
- Clustering based on data density
- Use 2 parameters :
  - ε: Max distance between neighbour
  - Min<sub>sample</sub>: Min number of elements per cluster
- More than Min<sub>sample</sub> neighbour Create a cluster
- For each element of the cluster, do the same same
- In the Ambiguity Solver :
  - distance in (η,φ); ε=0.07 ; Min<sub>sample</sub>=2

