Contraction Contra

Status of DUNE Offline Computing

Mike Kirby on behalf of DUNE Collaboration 26TH International Conference on Computing in High Energy & Nuclear Physics May 9, 2023 - Norfolk, VA

Quick reminder about DUNE

- neutrino experiment studying neutrino oscillation parameter (mass ordering, matter vs antimatter asymmetry, unitarity), proton decay, supernova neutrinos, and more.
- four very large LAr TPC (17 kT) at 4850 ft underground in Lead, SD (Homestake Mine)
- near detector onsite at Fermilab being designed (3 sub-detectors, two that move)
- two prototypes at CERN (ProtoDUNE II Horizontal Drift ProtoDUNE II Vertical Drift)

Optimized location of the Far Detector

Excavation continues...

4850 level

Pilot

Slide: C. Mossey Pilot 100% Cut 1 Cut 2

Excavation continues...

North Detector Cavern – West End

‡ Fermilab

Slide: C. Mossey

Far Detector Dataflow and Trigger Records

- beam coincidence events are extremely important, but of limited total volume
 - ~1 Hz beam rate
 - active online trigger in development
 - Region-of-Interest within module
 - online compression and zero-suppression being considered
- solar neutrino triggered events
- cosmic ray events and calibrations
- supernova readout events
 - ~140 TB in 100 seconds one FD module
 - work w/ trigger primitives for immediate optical follow up
 - transfer out 4 hours and process in 4 hours for precision optical observations
- DUNE requirement less than 30 PB/year total to permanent storage from all active FDs

Process	Rate/module	size/instance	size/module/year
Beam event	41/day	3.8 GB	30 TB/year
Cosmic rays	4,500/day	3.8 GB	6.2 PB/year
Supernova trigger	1/month	140 TB	1.7 PB/year
Solar neutrinos	10,000/year	\leq 3.8 GB	35 TB/year
Calibrations	2/year	750 TB	1.5 PB/year
Total			9.4 PB/year

Recently published DUNE Computing CDR - https://arxiv.org/abs/2210.15665

Fermilab

Data Placement Strategy

- accomplished with Rucio and FTS3 <u>Scale</u> tests of new DUNE data pipeline - S. Timm
- 2 copies of raw data on tape
 - one copy on each side of an ocean
 - 6 months on disk
- 1 replica of reco/sim on tape
 - distribute across global Rucio SEs
 - annual reco pass over all data
 - annual sim campaign to match
 - production resident on disk for 2 years
- Assume 2 disk copies of reco and sim
 - impose shorter lifetimes on tests & sim stages
 - R&D exploring data tiers and formats
- DUNE HDF5 Experience B. Chowdhury

DUNE Computing Resource Model

- less "tiered" than current WLCG model —> flatter model proposed by HSF DOMA working group
 - take advantage of existing WLCG sites that can add DUNE access
 - require reasonable minimum size storage elements
 - allow for CPU only sites with data streaming
- collaborating institutions (or groups of institutions) provide significant disk resources (~1PB chunks)
- plan to use common tools for most services
- participation in the HSF process important to provide and integrate new solutions

Fermilab

CERN and Neutrino Platform currently hosting ProtoDUNE

- ProtoDUNE Single Phase and Dual Phase
 - constructed and operated during the timeframe of 2018 - 2020
 - ProtoDUNE SP took 6 weeks of beam (~25 Hz)
 - invaluable information about performance, construction, and operations

- ProtoDUNE II currently under construction
 - Horizontal Drift and Vertical Drift
 - HD anticipate LAr filling 2023Q4
 - VD assembly underway for 2024 operations
 - Beam operations in 2023/2024
 - <u>DUNE Database Development L. Gerlach & A.P.</u>
 <u>Vizcaya Hernandez</u>

‡ Fermilab

Summer 2022 Data Challenge 4 - ProtoDUNE

- Goals of the Data Challenge 4 test all the services and procedures that will be used in the forthcoming beam runs of PD-HD and PD-VD
- Phase 1 Data Pipeline
 - Goal test data path EHN1->CERN->FNAL
 - transfer, declare, and replicate "raw data" at needed scale
 - 3.6 GBytes/s achieved across atlantic
- Phase 2 Data Processing
 - Goal sustain 5000 concurrent jobs for keep up processing
 - significant drop in CPU efficiency for jobs where large input data files not located "near" job
 - The Workflow System (now "justIN")
 - The Data Dispatcher

Summer 2022 Data Challenge 4 - ProtoDUNE

- Goals of the Data Challenge 4 test all the services and procedures that will be used in the forthcoming beam runs of PD-HD and PD-VD
- Phase 1 Data Pipeline
 - Goal test data path EHN1->CERN->FNAL
 - transfer, declare, and replicate "raw data" at needed scale
 - 3.6 GBytes/s achieved across atlantic
- Phase 2 Data Processing
 - Goal sustain 5000 concurrent jobs for keep up processing
 - significant drop in CPU efficiency for jobs where large input data files not located "near" job
 - The Workflow System (now "justIN")
 - The Data Dispatcher

- DUNE will take advantage of variety of architectures and algorithms
 - actively utilized resources at NERSC facilities for simulation and reconstruction of data
 - HEPCloud providing centralized submission point for production
- <u>Neutrino interaction vertex-finding in a</u>
 <u>DUNE far-detector using Pandora deep-</u>
 <u>learning A. Chappell</u>
- Differentiable Simulation of the DUNE
 Near Detector Liquid Argon Time
 Projection Chamber S. Gasiorowski
- Using parallel I/O libraries for managing HEP experimental data - A. Bashyal

- DUNE will take advantage of variety of architectures and algorithms
 - actively utilized resources at NERSC facilities for simulation and reconstruction of data
 - HEPCloud providing centralized submission point for production
- <u>Neutrino interaction vertex-finding in a</u>
 <u>DUNE far-detector using Pandora deep-</u>
 <u>learning A. Chappell</u>
- Differentiable Simulation of the DUNE
 Near Detector Liquid Argon Time
 Projection Chamber S. Gasiorowski
- Using parallel I/O libraries for managing HEP experimental data - A. Bashyal

Contract Fermilab

- DUNE will take advantage of variety of architectures and algorithms
 - actively utilized resources at NERSC facilities for simulation and reconstruction of data
 - HEPCloud providing centralized submission point for production
- <u>Neutrino interaction vertex-finding in a</u>
 <u>DUNE far-detector using Pandora deep-</u>
 <u>learning A. Chappell</u>
- <u>Differentiable Simulation of the DUNE</u>
 <u>Near Detector Liquid Argon Time</u>
 <u>Projection Chamber S. Gasiorowski</u>
- Using parallel I/O libraries for managing HEP experimental data - A. Bashyal

- DUNE will take advantage of variety of architectures and algorithms
 - actively utilized resources at NERSC facilities for simulation and reconstruction of data
 - HEPCloud providing centralized submission point for production
- <u>Neutrino interaction vertex-finding in a</u>
 <u>DUNE far-detector using Pandora deep-</u>
 <u>learning A. Chappell</u>
- Differentiable Simulation of the DUNE
 Near Detector Liquid Argon Time
 Projection Chamber S. Gasiorowski
- Using parallel I/O libraries for managing HEP experimental data - A. Bashyal

Fermilab

tentative DUNE future timeline

- Fall 2023 operations of
 ProtoDUNE HD
- Spring 2024 operations of ProtoDUNE VD
- 2023 2024 DUNE computing operations at scale with PD II data
- FD HD Module 1
 - 2027 construction
 - 2028 commissioning
 - 2029 physics
 - FD VD Module 1 year offset
- 2025-2027 use this time for development addressing unique DUNE Challenges

Long Term Computing Project Schedule

activity		2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
CERN Be	am	Ops				Ops.	Ops.												
LBNF Bea	am												Commiss. Operations						
ProtoDU	NE HD					Com.	Ops.												
ProtoDU	NE VD						Com.	Ops.											
FD HD M	Iodule 1									Comm	nissioni	ng	Opera	tions					
FD VD M	odule 1										Comm	iss.	Operations						
Near Det	tector												Commiss. Operatio		tions				
Test Stan	nds	Comm	issiong	/Opera	tions														
Hardwar	e DB																		
Conditio	ns DB		Design	l –															
Configur	ation DB					Co													
Slow Controls DB (interface to offline)				m															
MetaCat						iissi	Operat	tions											
Dispatch	er					ioni			Redesign Commiss.		iss.	Operations							
Workflow	w System					ng													
Monitori	ing																		
Rucio																			
Calibratio	on DB																		
Framewo	orks									Comm	iss.								
		De	sig	n			C	Commission				Operations							

Fermilab

• Both job submission and RSE to RSE w/ token authentication/authorization

芬 Fermilab

not to scale, not a technical design it's just a cartoon

- Maintain continuous processing workload at distributed sites commensurate with 25% "FD" raw data rate
 - utilize compute elements across the WLCG and OSG
 - match the locality of jobs with locality of data at nearby RSEs
- Both job submission and RSE to RSE w/ token authentication/authorization

🚰 Fermilab

Summary

- DUNE successfully utilizing WLCG resources
- Looking forward to addressing challenges
 - more complete Rucio integration
 - developing new workflows and workflow management - including access to HPC
 - integrate GPU software and hardware for processing - data prep especially
- looking forward to improved understanding that will come from involvement in DC24 and ProtoDUNE II operations
- exploring ideas for analysis centers
- This research is based upon work supported by the US Department of Energy, Office of Science, Office of High Energy Physics.

Fermilab

Thank you to the organizing committee

Backup

Data Challenge 4 - Phase 1 - Data Pipeline for ProtoDUNE

- Ran 5 days, July 11-15, Midnight UTC to Midnight UTC
- Generated ~500TB of data total
- Near end of the challenge reached a peak of 3.6GB/ s=28.8Gbit/s
- utilized FTS-3 for initial ingest, Rucio for replication, https and 3rd party transfers
- helped to identified issues that have to be fixed before beam run begins

Fermilab

DC-4 Phase 2 - Data Processing

bin

- Successfully shown ability to easily sustain 5000 jobs
- more importantly, automatic matching between the job locality and data locality
- looking for improved efficiency in the "flatter" computing model

WFS/justIN and DC4 - Andrew.McNab@cern.ch - DUNE Collab Meeting, CERN, Jan 2023

Central Utility Cavern

DUNE Far Detectors (Phase I)

‡ Fermilab

- Phase 1 will include caverns for 4 detector modules in South Dakota and 2 far detector modules, each 17 kton of LAr, the largest LAr TPCs ever constructed.
 - FD1: horizontal drift (ala ICARUS, MicroBooNE)
 - FD2: vertical drift (capitalizing on protoDUNEs)

• Order of magnitude more mass than has been deployed up to now from all LAr TPCs

- Near Detector three sub-detectors serving different purposes
- ND-LArTPC: Highly segmented Liquid Argon Time Projection Chamber
- TMS Muon Spectrometer (Phase 1) / ND-GArTPC Gaseous Ar TPC (Phase 2)
- SAND scintillator-based tracking and active argon target for on-axis beam monitoring
- DUNE-PRISM: Movement of LAr + TMS/GArTPC transverse to the beam, sampling beam profile, energy spectrum, and ν interactions to reduce systematic uncertainties

Fermilab

Defining the Computing Challenges

Offline reconstruction experience and impact on workflow and resources

- ProtoDUNE offline reconstruction
 - signal processing memory "pinch point"
 - adapt workflow & software to fit site constraints
 - adjust to future expectation of localized readout
 - process time extended trigger records
- Near Detector simulation and reconstruction
 - strong algorithm development and important achievements helping to define ND design
 - need for integration into a framework
 - reco simulation samples for resource estimates
 - advances in ML/AI show need for an improved standard development environment

‡Fermilab

Offline reconstruction experience and impact on workflow and resources

Michael Kirby on behalf of DUNE, CHEP 2(

- ProtoDUNE offline reconstruction
 - signal processing memory "pinch point"
 - adapt workflow & software to fit site constraints
 - adjust to future expectation of localized readout
 - process time extended trigger records
- Near Detector simulation and reconstruction
 - strong algorithm development and important achievements helping to define ND design
 - need for integration into a framework
 - reco simulation samples for resource estimates
 - advances in ML/AI show need for an improved standard development environment

GArSoft run time stats

Module Label	time/event (sec)				
RootInput(read)	0.00				
init:EventInit	1.31275e-05				
hit:CompressedHitFinder	0.00488308				
tpcclusterpass1:TPCHitCluster	0.0091922				
vechit:tpcvechitfinder2	0.0103787				
patrec:tpcpatrec2	0.0130245				
trackpass1:tpctrackfit2	0.014211				
vertexpass1:vertexfinder1	0.000851081				
tpccluster:tpccathodestitch	0.0269436				
track:tpctrackfit2	0.0135842				
vertex:vertexfinder1	6.19847e-05				
veefinder1:veefinder1	9.96417e-05				

Overview of the Computing Consortium

- organization of the working groups and management
- define source of resources
 - CCB computing resources
 - division of effort for development
- layout interfaces with other consortia

Consortium	Sites	 Collaboration 				
 Project management Core software development Core operations Interfaces to DUNE consortia Interfaces to other projects Training User support 	StorageCPUNetworking	 Algorithms Operations help User support Production group Validation Calibrations New ideas 				

not to scale, not a technical design it's just a cartoon

not to scale, not a technical design it's just a cartoon

‡ Fermilab

not to scale, not a technical design it's just a cartoon

Not anticipated to be part of DC24

7 Fermilab

not to scale, not a technical design it's just a cartoon

not to scale, not a technical design it's just a cartoon

‡ Fermilab

Listing the Unique DUNE Requirements

Networking for DUNE

- important requirements for operations
 - potential natural disasters combine to make multiple paths important
- interface between online and offline resources
- unique challenges with SNB data transfer and opportunity for fast processing
- wide area network:
 - DUNE is very well served by national science networks
 - ESnet, Geant, Janet, Surfnet, Renater....
- DUNE relies on these and thanks them.
 - fully engaged and participate in the global LHCOPN/LHCONE meetings
 - NRENS are ~1 TB backbones w/ 100 GB to many sites
 - discussed with ESnet potential/need for virtualised networks not foreseen at this time

DUNE FD WAN Bandwidth Timeline Projections:

Date	Stage of the experiment	Primary Path	Secondary Path	Tertiary Path	
Now	Cavern excavation	10GE	< 1GE via SURF	none	
2025	Detector construction	10GE	< 1GE via SURF	none	
2027	Computing/DAQ deployment	100GE	10GE	< 1GE via SURF	
2028	Cryo deployment completed	100GE	10Gb/s+	10GE	
2029	Start of science	100GE	10Gb/s+	10GE	

vLAN service provided by REED/GPN (shared) Dedicated circuit Ross Dry Bldg. to Chicago Dedicated circuit Yates Complex to Denver (10GE or 100GE)

Fermilab

Offline Computing Frameworks

- thanks to Frameworks Requirements Working Group
- document available on docdb at <u>DocDB 24423</u>
- review by the HEP Software Foundation (HSF)
 - recommend Production and Analysis frameworks may be different
 - develop unified framework for all offline prod
 - plan interface with Workflow Management

- handle very large events on complex architectures
 - partial region and subsetting of trigger records
 - temporal stitching of trigger records
- threadsafe + i/o management
- work plans for development of dynamic timewindow processing
 - FNAL LDRD funded for a prototype framework
 - DUNE coordinating closely with FNAL effort

Diagram from Kyle Knoepful FNAL LDRD