Flexible and minimal-overhead Event Data Model for track reconstruction in ACTS

Paul Gessinger CERN 2023-05-09 - CHEP 2023

Introduction

What is ACTS?

- Experiment-independent toolkit for track reconstruction applications
- Modern architecture and code, unit tested, continuous integration
- Minimal external dependencies
- Ready for multi-threading by design

a(ts,

Goals

- Provide established algorithms in a modern package
- Community platform for R&D across various experiment
- Provide testbed for R&D activities including new algorithms, machine learning, heterogeneous computing

Evaluation and/or deployment by multiple experiments

Event Data Model

Event Data Model objects

ACTS Event Data Model

Event Data Model (EDM) is critical piece of reconstruction software

Internal EDM

- Data objects to pass around between different parts of the library
- Library specific, tightly coupled to the algorithm

Public EDM

- Data objects clients directly interact with
- Should be experiment agnostic
- Extensible by experiment, easy integration

ACTS Event Data Model

Event Data Model (EDM) is critical piece of reconstruction software

Internal EDM

- Data objects to pass around between different parts of the library
- Library specific, tightly coupled to the algorithm

Focus so far!

ACTS Event Data Model

Event Data Model (EDM) is critical piece of reconstruction software

Focus now!

Public EDM

- Data objects clients directly interact with
- Should be experiment agnostic
- Extensible by experiment, easy integration

Acts::TrackContainer

- Client-focused primary output of tracking, used by track finding and fitting
- Track-level quantities + sequence of track states with intermediate information
- Tracks:
 - Defining parameters at perigee
 - Global track quantities (χ², num. hits, holes, outliers, etc)
- Track states:
 - Local parameters + cov. at geometric object (e.g. sensor)
 - Calibrated measurement, dimension, covariance
 - Auxiliary information like jacobian, type flags, etc

- Container is the primary data object
- Elements in containers are thin views (proxies) into them
- Container and proxy provide user-facing API
- Want this to be fully integratable into experiment IO infrastructure!

Implementation

Acts::TrackContainer

- Fully decoupled interface seen by ACTS and client consumers from the backend implementation: Backend can be fully experiment-specific
 - First attempt: inheritance and virtual function calls: resulted in undesirable overhead
 - Second attempt: template based extension, negative overhead (likely due to better optimization)
- Supports dynamically added columns (if the backend supports it)

Paul Gessinger

Backend interface / contract

- Interface-layer expects backend to implement set of methods
- Component access largely via single function and compile-time hashes of component names
- Dedicated methods where backends needs flexibility for implementation
- Design goal: allow ACTS components to directly manipulate the backend storage

track.parameters() = Acts::BoundVector::Zeros();

Core requirements

- Backend can return (non-dangling) references to memory representation
- Tracks and track states can be fully identified by an index
- Track states parameters, covariances + jacobians are in an indexed container somewhere

EDM4hep conversion

- Common EDM package for the key4hep software stack
- Built using PODID framework: common definition of various data types, relationships
- Contain edm4hep::Track & edm4hep::TrackState
 - Uses the LCIO parametrization $d_0, z_0, \phi, \tan \lambda, \Omega$ (ACTS uses $I_0, I_1, \phi, \theta, q/p, t$)
 - Track states are described using perigee parameters only (ACTS uses varying local parametrization + link to geometry object)

Direct & transparent backend in EDM4hep not feasible

Required contract cannot be fulfilled:

- No stable references to native parametrization
- Loss of on-surface hit position

Instead: Full (lossy) conversion to and from EDM4hep tracks implemented (and in turn is backend agnostic)

PODIO **backend:** ActsPodioEdm

Goal

Demonstrate **ability to integrate** with an external IO solution like PODIO
This is not an alternative to EDM4hep, but help us understand requirements

- Specify ACTS EDM in PODIO -yaml ¹ in *plugin*
- Implemented ActsPodioEdm::Track + ActsPodioEdm::TrackStates
 - Use components to produce stable references to fulfill backend contract
 - Auxiliary data types for dense columns overallocated storage for measurements
 - Experiment-aware translation helper for surfaces and uncalibrated measurements
- Full IO roundtrip implemented and tested, Kalman Filter can run on this without modifications

¹see also talk on PODIO on Thursday

Summary & conclusion

- ACTS has gained client-facing high-level Track Event Data model!
- Track finding + fitting already produce this data type (generic refitting pending)
- Interface layer is fully separated from backend implementation
- Backend allows direct integration with experiment IO framework
- Support conversion to and from EDM4hep for Tracks
- Implemented custom PODIO -based EDM demonstrator
 - Transparent backend with PODIO feasible

Further work

Migrate all downstream tools to work on Track EDM
Characterize PODIO backend performance

Experiment interface

- PODIO backend still supposed to be experiment agnostic
- Experiment-knowledge needed to persist otherwise transient information

Surfaces

- Two types: part of detector geometry, ad-hoc surfaces
- Encode known surfaces as identifiers, serialize ad-hoc surfaces
- Make no assumptions on identification model

Measurements

- ACTS uses strong type-erasure for experiment-specific input measurements
- Cannot serialize type-erased measurements automatically

Factorized to experiment-specific helper class to implement these conversions