
Flexible and minimal-overhead Event
Data Model for track reconstruction in
ACTS

This is an output file created in Illustrator CS3

Colour reproduction
The badge version must only be reproduced on a
plain white background using the correct blue:
 Pantone: 286
 CMYK: 100 75 0 0
 RGB: 56 97 170
 Web: #3861AA

Where colour reproduction is not faithful, or the
background is not plain white, the logo should be
reproduced in black or white – whichever provides
the greatest contrast. The outline version of the
logo may be reproduced in another colour in
instances of single-colour print.

Clear space
A clear space must be respected around the logo:
other graphical or text elements must be no closer
than 25% of the logo’s width.

Placement on a document
Use of the logo at top-left or top-centre of a
document is reserved for official use.

Minimum size
Print: 10mm
Web: 60px

CERN Graphic Charter: use of the outline version of the CERN logo

Paul Gessinger

CERN

2023-05-09 - CHEP 2023

Introduction

What is ACTS?

� Experiment-independent toolkit for track reconstruction

applications

� Modern architecture and code, unit tested, continuous

integration

� Minimal external dependencies

� Ready for multi-threading by design

tsa
Goals

� Provide established algorithms in a modern package
� Community platform for R&D across various experiment
� Provide testbed for R&D activities including new algorithms, machine learning,

heterogeneous computing

Paul Gessinger 2023-05-09 - CHEP 2023 1

Evaluation and/or deployment by multiple experiments

Inner Tracker
Acts Developers Workshop, Sept 26, 2022

Performance with ideal geometry

Pions embedded in

• AuAu with 50 kHz pileup

• pp with 3 MHz pileup

All embedded tracks:

• > 2 MVTX hits

• > 20 TPC hits

Lower right:

Upsilon(1S) mass resolution
versus centrality

• AuAu with 50 kHz pileup

6

1 10
 [GeV]

T
p

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

) [
cm

]
xy

(D
C

A
σ

 simulationsPHENIX
nTPC>20, nMVTX>2
3MHz pp
50kHz 0-20fm AuAu

1 10
 [GeV]

T
p

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04T
)/p T

(p
σ

 simulationsPHENIX
nTPC>20, nMVTX>2
3MHz pp
50kHz 0-20fm AuAu

1 10
 [GeV]

T
p

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 E
ffi

ci
en

cy

 simulationsPHENIX
nTPC>20, nMVTX>2
3MHz pp
50kHz 0-20fm AuAu

0 2 4 6 8 10 12 14 16 18
Impact parameter [fm]

70

80

90

100

110

120

130

140

 M
as

s
re

so
lu

tio
n

[M
eV

]

Simulation Internal sPHENIX (1S)ϒ

& FASER-2

ePIC (EIC)

(presentation

+ keynote yesterday)

STCF

(presentation just now)

Paul Gessinger 2023-05-09 - CHEP 2023 2

https://indico.jlab.org/event/459/contributions/11457/
https://indico.jlab.org/event/459/contributions/12490/
https://indico.jlab.org/event/459/contributions/11431/

Event Data Model

Event Data Model objects

Experiment

measurements
Clusters Space points

Triplet seeds Track candidates Final tracks

Focus of this work:

TrackContainer

Clusterization SP formation

Seeding

Track finding Track fit

Paul Gessinger 2023-05-09 - CHEP 2023 3

ACTS Event Data Model

� Event Data Model (EDM) is critical piece of reconstruction software

Internal EDM

� Data objects to pass around between different parts of the library
� Library specific, tightly coupled to the algorithm

Public EDM

� Data objects clients directly interact with
� Should be experiment agnostic
� Extensible by experiment, easy integration

Paul Gessinger 2023-05-09 - CHEP 2023 4

ACTS Event Data Model

� Event Data Model (EDM) is critical piece of reconstruction software

Internal EDM

� Data objects to pass around between different parts of the library
� Library specific, tightly coupled to the algorithm

Public EDM

� Data objects clients directly interact with
� Should be experiment agnostic
� Extensible by experiment, easy integration

Focus so far!

Paul Gessinger 2023-05-09 - CHEP 2023 4

ACTS Event Data Model

� Event Data Model (EDM) is critical piece of reconstruction software

Internal EDM

� Data objects to pass around between different parts of the library
� Library specific, tightly coupled to the algorithm

Public EDM

� Data objects clients directly interact with
� Should be experiment agnostic
� Extensible by experiment, easy integration

Focus now!

Paul Gessinger 2023-05-09 - CHEP 2023 4

Acts::TrackContainer

� Client-focused primary output of tracking, used by track finding and fitting

� Track-level quantities + sequence of track states with intermediate information

� Tracks:

I Defining parameters at perigee
I Global track quantities (χ2, num. hits,

holes, outliers, etc)

� Track states:

I Local parameters + cov. at geometric

object (e.g. sensor)
I Calibrated measurement, dimension,

covariance
I Auxiliary information like jacobian,

type flags, etc

trajectory a

trajectory b

track states

Paul Gessinger 2023-05-09 - CHEP 2023 5

Architecture

Architecture

� Container is the primary data object

� Elements in containers are thin views (proxies) into them

� Container and proxy provide user-facing API

� Want this to be fully integratable into experiment IO infrastructure!

for (auto track : tracks) {
track.parameters() = Acts::BoundVector::Zeros();
track.nMeasurements() = 42;
for (auto trackState: track.trackStates()) {

trackState.referenceSurface();
}

}

� container

� index

I parameters()

I covariance()

I surface()
…

TrackProxy

i=0: a, b, c, d, …

i=1: a, b, c, d, …

i=2: a, b, c, d, …

i=3: a, b, c, d, …

i=4: a, b, c, d, …

I addTrack()

I begin()

I end()

TrackContainer

Paul Gessinger 2023-05-09 - CHEP 2023 6

Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIOPODIO

ATLAS xAOD

std::vector

PODIOPODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 7

Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIOPODIO

ATLAS xAOD

std::vector

PODIOPODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 7

Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIOPODIO

ATLAS xAOD

std::vector

PODIOPODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 7

Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIO

PODIO

ATLAS xAOD

std::vector

PODIO

PODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 7

Implementation

Acts::TrackContainer
� Fully decoupled interface seen by ACTS and client consumers from the backend
implementation: Backend can be fully experiment-specific
I First attempt: inheritance and virtual function calls: resulted in undesirable overhead
I Second attempt: template based extension, negative overhead (likely due to better

optimization)

� Supports dynamically added columns (if the backend supports it)

5.2 5.3 5.4 5.5 5.6 5.7 5.8
time per event [ms]

0

50

100

150

200

250

300

n

CKF tracks, 1000 events
main: 5.528ms (100.00%)
virtual interface: 5.677ms (102.69%)
template interface: 5.283ms (95.57%)

0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450
time per event [ms]

0

50

100

150

200

n

Truth tracks, 10000 events
main: 0.426ms (100.00%)
virtual interface: 0.440ms (103.21%)
template interface: 0.416ms (97.70%)

Paul Gessinger 2023-05-09 - CHEP 2023 8

Backend interface / contract

� Interface-layer expects backend to implement set of methods

� Component access largely via single function and compile-time hashes of

component names

� Dedicated methods where backends needs flexibility for implementation

� Design goal: allow ACTS components to directly manipulate the backend storage

track.parameters() = Acts::BoundVector::Zeros();

Core requirements

� Backend can return (non-dangling) references to memory representation
� Tracks and track states can be fully identified by an index
� Track states parameters, covariances + jacobians are in an indexed container

somewhere

Paul Gessinger 2023-05-09 - CHEP 2023 9

EDM4hep conversion

� Common EDM package for the key4hep software stack

� Built using PODIO framework: common definition of various data types, relationships

� Contain edm4hep::Track & edm4hep::TrackState
I Uses the LCIO parametrization d0, z0, φ, tanλ,Ω (ACTS uses l0, l1, φ, θ,q/p, t)
I Track states are described using perigee parameters only (ACTS uses varying local

parametrization + link to geometry object)

Direct & transparent backend in EDM4hep not feasible

� Required contract cannot be fulfilled:

I No stable references to native parametrization
I Loss of on-surface hit position

� Instead: Full (lossy) conversion to and from EDM4hep tracks implemented

(and in turn is backend agnostic)

Paul Gessinger 2023-05-09 - CHEP 2023 10

https://bib-pubdb1.desy.de/record/81214/files/LC-DET-2006-004%5B1%5D.pdf

Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIO

PODIO

ATLAS xAOD

std::vector

PODIO

PODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 11

Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIO

PODIO

ATLAS xAOD

std::vector

PODIO

PODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 11

PODIO backend: ActsPodioEdm

Goal

� Demonstrate ability to integrate with an external IO solution like PODIO
� This is not an alternative to EDM4hep , but help us understand requirements

� Specify ACTS EDM in PODIO -yaml 1 in plugin

� Implemented ActsPodioEdm::Track + ActsPodioEdm::TrackStates
I Use components to produce stable references to fulfill backend contract
I Auxiliary data types for dense columns overallocated storage for measurements
I Experiment-aware translation helper for surfaces and uncalibrated measurements

� Full IO roundtrip implemented and tested, Kalman Filter can run on this

without modifications

1see also talk on PODIO on Thursday

Paul Gessinger 2023-05-09 - CHEP 2023 12

https://indico.jlab.org/event/459/contributions/11578/

Summary & conclusion

� ACTS has gained client-facing high-level Track Event Data model!

� Track finding + fitting already produce this data type (generic refitting pending)

� Interface layer is fully separated from backend implementation

� Backend allows direct integration with experiment IO framework

� Support conversion to and from EDM4hep for Tracks

� Implemented custom PODIO -based EDM demonstrator

I Transparent backend with PODIO feasible

Further work

� Migrate all downstream tools to work on Track EDM
� Characterize PODIO backend performance

Paul Gessinger 2023-05-09 - CHEP 2023 13

Backup

Experiment interface

� PODIO backend still supposed to be experiment agnostic

� Experiment-knowledge needed to persist otherwise transient information

Surfaces

� Two types: part of detector geometry,

ad-hoc surfaces
� Encode known surfaces as identifiers,

serialize ad-hoc surfaces
� Make no assumptions on

identification model

Measurements

� ACTS uses strong type-erasure for

experiment-specific input

measurements
� Cannot serialize type-erased

measurements automatically

� Factorized to experiment-specific helper class to implement these conversions

Paul Gessinger 2023-05-09 - CHEP 2023 xiv

	Introduction
	Event Data Model
	Architecture
	Implementation
	Appendix
	Backup

