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Introduction



What is ACTS?

� Experiment-independent toolkit for track reconstruction

applications

� Modern architecture and code, unit tested, continuous

integration

� Minimal external dependencies

� Ready for multi-threading by design

tsa
Goals

� Provide established algorithms in a modern package
� Community platform for R&D across various experiment
� Provide testbed for R&D activities including new algorithms, machine learning,

heterogeneous computing

Paul Gessinger 2023-05-09 - CHEP 2023 1



Evaluation and/or deployment by multiple experiments

Inner Tracker
Acts Developers Workshop, Sept 26, 2022

Performance with ideal geometry

Pions embedded in 

• AuAu with 50 kHz pileup

• pp with 3 MHz pileup


All embedded tracks:

• > 2 MVTX hits

• > 20 TPC hits


Lower right:

Upsilon(1S) mass resolution 
versus centrality

• AuAu with 50 kHz pileup
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Event Data Model



Event Data Model objects

Experiment

measurements
Clusters Space points

Triplet seeds Track candidates Final tracks

Focus of this work:

TrackContainer

Clusterization SP formation

Seeding

Track finding Track fit
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ACTS Event Data Model

� Event Data Model (EDM) is critical piece of reconstruction software

Internal EDM

� Data objects to pass around between different parts of the library
� Library specific, tightly coupled to the algorithm

Public EDM

� Data objects clients directly interact with
� Should be experiment agnostic
� Extensible by experiment, easy integration
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ACTS Event Data Model
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Acts::TrackContainer

� Client-focused primary output of tracking, used by track finding and fitting

� Track-level quantities + sequence of track states with intermediate information

� Tracks:

I Defining parameters at perigee
I Global track quantities (χ2, num. hits,

holes, outliers, etc)

� Track states:

I Local parameters + cov. at geometric

object (e.g. sensor)
I Calibrated measurement, dimension,

covariance
I Auxiliary information like jacobian,

type flags, etc

trajectory a

trajectory b

track states
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Architecture



Architecture

� Container is the primary data object

� Elements in containers are thin views (proxies) into them

� Container and proxy provide user-facing API

� Want this to be fully integratable into experiment IO infrastructure!

for (auto track : tracks) {
track.parameters() = Acts::BoundVector::Zeros();
track.nMeasurements() = 42;
for (auto trackState: track.trackStates()) {

trackState.referenceSurface();
}

}

� container

� index

I parameters()

I covariance()

I surface()
…

TrackProxy

i=0: a, b, c, d, …

i=1: a, b, c, d, …

i=2: a, b, c, d, …

i=3: a, b, c, d, …

i=4: a, b, c, d, …

I addTrack()

I begin()

I end()

TrackContainer
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Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIOPODIO

ATLAS xAOD

std::vector

PODIOPODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend
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Implementation



Acts::TrackContainer
� Fully decoupled interface seen by ACTS and client consumers from the backend
implementation: Backend can be fully experiment-specific
I First attempt: inheritance and virtual function calls: resulted in undesirable overhead
I Second attempt: template based extension, negative overhead (likely due to better

optimization)

� Supports dynamically added columns (if the backend supports it)
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Backend interface / contract

� Interface-layer expects backend to implement set of methods

� Component access largely via single function and compile-time hashes of

component names

� Dedicated methods where backends needs flexibility for implementation

� Design goal: allow ACTS components to directly manipulate the backend storage

track.parameters() = Acts::BoundVector::Zeros();

Core requirements

� Backend can return (non-dangling) references to memory representation
� Tracks and track states can be fully identified by an index
� Track states parameters, covariances + jacobians are in an indexed container

somewhere
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EDM4hep conversion

� Common EDM package for the key4hep software stack

� Built using PODIO framework: common definition of various data types, relationships

� Contain edm4hep::Track & edm4hep::TrackState
I Uses the LCIO parametrization d0, z0, φ, tanλ,Ω (ACTS uses l0, l1, φ, θ,q/p, t)
I Track states are described using perigee parameters only (ACTS uses varying local

parametrization + link to geometry object)

Direct & transparent backend in EDM4hep not feasible

� Required contract cannot be fulfilled:

I No stable references to native parametrization
I Loss of on-surface hit position

� Instead: Full (lossy) conversion to and from EDM4hep tracks implemented

(and in turn is backend agnostic)
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Architecture
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PODIO backend: ActsPodioEdm

Goal

� Demonstrate ability to integrate with an external IO solution like PODIO
� This is not an alternative to EDM4hep , but help us understand requirements

� Specify ACTS EDM in PODIO -yaml 1 in plugin

� Implemented ActsPodioEdm::Track + ActsPodioEdm::TrackStates
I Use components to produce stable references to fulfill backend contract
I Auxiliary data types for dense columns overallocated storage for measurements
I Experiment-aware translation helper for surfaces and uncalibrated measurements

� Full IO roundtrip implemented and tested, Kalman Filter can run on this

without modifications

1see also talk on PODIO on Thursday
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Summary & conclusion

� ACTS has gained client-facing high-level Track Event Data model!

� Track finding + fitting already produce this data type (generic refitting pending)

� Interface layer is fully separated from backend implementation

� Backend allows direct integration with experiment IO framework

� Support conversion to and from EDM4hep for Tracks

� Implemented custom PODIO -based EDM demonstrator

I Transparent backend with PODIO feasible

Further work

� Migrate all downstream tools to work on Track EDM
� Characterize PODIO backend performance
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Backup



Experiment interface

� PODIO backend still supposed to be experiment agnostic

� Experiment-knowledge needed to persist otherwise transient information

Surfaces

� Two types: part of detector geometry,

ad-hoc surfaces
� Encode known surfaces as identifiers,

serialize ad-hoc surfaces
� Make no assumptions on

identification model

Measurements

� ACTS uses strong type-erasure for

experiment-specific input

measurements
� Cannot serialize type-erased

measurements automatically

� Factorized to experiment-specific helper class to implement these conversions

Paul Gessinger 2023-05-09 - CHEP 2023 xiv


	Introduction
	Event Data Model
	Architecture
	Implementation
	Appendix
	Backup


