
Generalizing mkFit and its
Application to HL-LHC

The mkFit team, for the CMS collaboration
CHEP-2023

A.R. Hall2, A. Yagil1, D.S. Riley5, E. Vourliotis1, G. Cerati3, L. Giannini1,

M. Kortelainen3, M. Masciovecchio1, M. Tadel1, P. Gartung3, P. Elmer4, P. Wittich5,
 S. Krutelyov1, S.R. Lantz5, T. Reid5

1. UCSD, 2. USNA Annapolis, 3. Fermilab, 4. Princeton, 5. Cornell

1

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Overview:

- One-slide introduction to mkFit

- mkFit in CMS: usage & performance

- Code generalizations and improvements in support of iterative tracking and

HL-LHC

- Planned future work

2

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Introduction to mkFit ⇒ Matriplex Kalman trajectory Fitter

● Parallelized and vectorized track finding and fitting
○ Parallelization through Intel TBB
○ Vectorization via SIMD pragmas (mostly in propagation) and Matriplex (Kalman operations)

■ Made possible by generalizing detector geometry and its traversal so that sets of track candidates undergo
the same operations

● Matriplex: classes for vectorized operations on a set of matrices / vectors
○ Includes code generator for optimized matrix multiplication code:

■ fixed element 0 or 1 values – can reduce number of operations by 50%
■ inline transpose
■ generates regular matrix calculation C++ code or intrinsics (FMA supported)

● A three line history
○ 2014 – explore vectorized fitting (Xeon Phi) → success → track finding for high-PU environments

■ Goal: Attempt to keep mkFit core experiment-independent
○ 2018 – decent CMS prototype → improve precision, low-pT performance → configurability
○ 2022 – inclusion into CMSSW (CMS software) → start preparing for HL-LHC / Phase-2

■ stand-alone mode of operation is still supported

3

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

mkFit in CMS - a brief introduction

4

From CMS-DP-2022-018

● CMS uses iterative tracking:
○ 12 main tracking iterations, starting from central, pixel-based seeds, then swiping up the rest
○ mkFit is currently used for 5 of such iterations (≈90% of all reconstructed tracks with pT > 0.5 GeV)

* In CMS-DP-2022-018, mkFit is also used in PixelLess

https://cds.cern.ch/record/2814000
https://cds.cern.ch/record/2814000

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

mkFit in CMS - the tracking workflow
● In iterations using mkFit, the tracking workflow consists of the following tasks:

○ pre-mkFit: seed finding

○ mkFit: track building
■ Seed cleaning (if needed):

- mkFit processes seeds in parallel
- can not rely on claimed hits to discard seeds

■ Seed partitioning:
- barrel / transition / endcap + sorting in { η, φ }

■ Forward search with quality filtering (optional)
■ Backward fit / search with quality filtering
■ Duplicate removal

○ post-mkFit: final-fit, final NN quality selection

5

Seeds

Tr
ac

k
bu

ild
in

g

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

mkFit in CMS - physics performance

6

From CMS-DP-2022-018 (*where mkFit is also used in PixelLess iteration)

● Tracking efficiency comparable: Small gains in endcap (2.4 < |η| < 2.8)
● Tracking fake rate better overall: Fake rate reduction with increasing |η|
● Tracking duplicate rate slightly increased: Mitigated by dedicated duplicate

removal.

https://cds.cern.ch/record/2814000

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

mkFit in CMS - computational performance

From CMS-DP-2022-018 (*where mkFit is also used in PixelLess iteration)

● Vectorization and threading scaling tests for initial
iteration show (according to Amdahl’s Law)

○ ~70% of operations effectively vectorized.
○ >95% of code effectively parallelized.

● Computational speedups when using mkFit:
○ Individual mkFit iterations: Up to 6.7x building time reduction
○ Sum of mkFit iterations: ~3.5x building time reduction

■ Track building with mkFit costs less than seeding, ≈ fitting
○ Sum of all iterations: ~1.7x building time reduction
⇒ 25% reduction of total tracking time
⇒ Event throughput increase by 10-15% in Run-3

7

Single-threaded measurements on
1 Intel® Xeon® Gold 6130 CPU @ 2.10GHz,

local access to inputs

https://cds.cern.ch/record/2814000

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Generalizations for iterative tracking & HL-LHC:

- Geometry description & traversal

- Configuration classes / mechanisms

- Catalog approach to standard track-processing functions

8

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

0

Geometry description and traversal

● Detectors split into mkFit layers
○ Potentially finer granularity than readout / construction

■ E.g., mono/stereo treated as separate layers

● Layer is a mkFit tracking concept:
○ Track search proceeds through a sequence of layers → called a LayerPlan

■ Plans differ for barrel / transition / endcap
○ This allows for parallel processing of multiple tracks as we do not deal with individual modules

● Changes
○ On-the-fly extraction of layer envelopes/gaps
○ Add module-id information to hits to allow for

overlap hit collection
○ CMS Phase-2 geometry has tilted modules

⇒ requires module position, normal and strip
direction to be known to mkFit

9

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

mkFit Configuration system & classes

● Each tracking iteration needs to be separately configurable.
○ class IterationConfig → top-level configuration → which tasks to perform

■ parameters for seed & duplicate cleaning
■ includes LayerPlan and the following classes

○ class IterationParams → tracking parameters, e.g., max # of holes, χ2 cuts; quality filter params
■ can be different for forward / backward search

○ class IterationLayerConfig → parameters specific to layers, hit search windows; one per layer!
● In CMSSW (or any other multi-threaded framework) configuration is required to

be completely separable → instantiated and managed independently
○ Tracking iterations are driven by the CMS module system, typically configured via Python scripts

● As a compromise, all mkFit configuration can be loaded (and saved) into JSON
○ Reading of partial JSON overrides is fully supported – patch mode:

■ read full configuration from CMSSW release
■ override desired parameters with a simple additional JSON file

○ Frequently used parameters can also be set via Python (in particular, for heavy-ion operations)
○ Plugin-style configuration is still supported in stand-alone mode

10

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

"Standard" functions

● With support of multiple iterations and Phase-2 geometry it became obvious we
need a more flexible configuration mechanism for the following tasks:

■ seed cleaning & partitioning – per iteration
■ candidate filters: pre- and post-backward fit – per iteration
■ duplicate cleaning – per iteration
■ candidate scoring – per iteration with possible per region override

○ Stuffing extra parameters into IterationConfig & friends can not scale
● Use std::function<task_func_type> catalogs with string keys

○ Populate the catalogs via static object initializers in source files that contain the task code
■ can all be hidden in anonymous namespaces
■ function templates can be used to inject compile-time parameters
■ can even be lambdas for simple cases

○ JSON files specify the names / strings for the functions to be picked
○ After configuration loading / setup is complete the names get resolved into std::functions<> and

become available through IterationConfig

11

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Binnor<>

● Fast 2D nearest neighbor search on a grid
○ Generalization of algorithm initially developed for pre-selecting hits.
○ Now also used for seed cleaning, seed partitioning, and duplicate removal.

● Specify two axes (like histogram: Nbins, min, max)
○ U(1) type supported → φ
○ Uses bit packing to minimize memory usage (and cache misses)

● Lookup structures created by sorting of registered entries
○ { start, size } pairs are stored for each bin
○ Uses Radix sort

12

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Single block memory allocation

● Memory for all track candidates, including hit-on-track information is acquired in
a single allocation and distributed sequentially (dealloc is a no-op).

○ Reduce allocation and deallocation overhead while still using std::vectors.
○ Vector-gather (vgather) instruction, which is used to fill Matriplex’s with input data, breaks if hit or

track allocations are done from different threads (probably virtual memory segment)

13

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Ongoing & Future work

● Use the described changes to further tune Phase-1 CMS iterations
○ Especially track scoring ⇒ use mkFit for more than 5 current iterations

● Final-fit now the most time-consuming tracking task in iterations using mkFit
○ ⇒ Explore how mkFit could be used effectively in this area

■ In parallel, this can also improve backward-fit and backward-search in mkFit

● For Phase-2 we have a proof-of-life minimal configuration
○ Geometry, LayerPlan’s and seed-partitioning are correct

■ Phase-1 functions still used for others
○ ⇒ Continue Phase-2 developments, focus on the first (Initial) iteration

● Explore Line Segment Tracking – mkFit hybrid
○ Highly parallelizable algorithm that can run efficiently on GPUs
○ Uses Alpaka
○ Already integrated into CMSSW

14

M. Tadel et al. for the CMS collaboration, Generalizing mkFit and its Application to HL-LHC, CHEP 2023

Conclusion

● mkFit is in production mode since Run-3
○ As drop-in replacement for CKF (*), used in 5 out of 12 iterations with equivalent physics

■ With time reduction for overall tracking of ~25% → for full reconstruction of >10%
■ With event throughput increase by ~10-15%

 (*) CKF = Combinatorial Kalman Filter, default for CMS track building when mkFit is not used

● Work has started to support Phase-2 tracking
○ Done: generalizations of geometry description, configuration, and standard functions
○ In progress: further modularization to support final fit.
○ This will also help us in tuning mkFit for additional CMS iterations (already for Run-3) …
○ … and makes mkFit easier to tune for potential other uses.

Related presentations:
● L. Giannini: A DNN for CMS track classification and selection

○ Poster
● P. Chang: Line Segment Tracking in the High-luminosity LHC

○ Track 2 (Online computing): Tue. May 9, 2pm

15

