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Overview:

- One-slide introduction to mkFit

- mkFit in CMS: usage & performance

- Code generalizations and improvements in support of iterative tracking and 

HL-LHC

- Planned future work
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Introduction to mkFit ⇒ Matriplex Kalman trajectory Fitter

● Parallelized and vectorized track finding and fitting
○ Parallelization through Intel TBB
○ Vectorization via SIMD pragmas (mostly in propagation) and Matriplex (Kalman operations)

■ Made possible by generalizing detector geometry and its traversal so that sets of track candidates undergo 
the same operations

● Matriplex: classes for vectorized operations on a set of matrices / vectors
○ Includes code generator for optimized matrix multiplication code:

■ fixed element 0 or 1 values – can reduce number of operations by 50%
■ inline transpose
■ generates regular matrix calculation C++ code or intrinsics (FMA supported)

● A three line history
○ 2014 – explore vectorized fitting (Xeon Phi) → success → track finding for high-PU environments

■ Goal: Attempt to keep mkFit core experiment-independent
○ 2018 – decent CMS prototype → improve precision, low-pT performance → configurability
○ 2022 – inclusion into CMSSW (CMS software) → start preparing for HL-LHC / Phase-2

■ stand-alone mode of operation is still supported
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mkFit in CMS - a brief introduction
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From CMS-DP-2022-018

● CMS uses iterative tracking:
○ 12 main tracking iterations, starting from central, pixel-based seeds, then swiping up the rest
○ mkFit is currently used for 5 of such iterations (≈90% of all reconstructed tracks with pT > 0.5 GeV)

* In CMS-DP-2022-018, mkFit is also used in PixelLess

https://cds.cern.ch/record/2814000
https://cds.cern.ch/record/2814000
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mkFit in CMS - the tracking workflow
● In iterations using mkFit, the tracking workflow consists of the following tasks: 

○ pre-mkFit: seed finding

○ mkFit: track building
■ Seed cleaning (if needed):

- mkFit processes seeds in parallel 
- can not rely on claimed hits to discard seeds

■ Seed partitioning: 
- barrel / transition / endcap + sorting in { η, φ }

■ Forward search with quality filtering (optional)
■ Backward fit / search with quality filtering
■ Duplicate removal

○ post-mkFit: final-fit, final NN quality selection
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mkFit in CMS - physics performance
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From CMS-DP-2022-018 (*where mkFit is also used in PixelLess iteration)

● Tracking efficiency comparable: Small gains in endcap (2.4 < |η| < 2.8)
● Tracking fake rate better overall: Fake rate reduction with increasing |η|
● Tracking duplicate rate slightly increased: Mitigated by dedicated duplicate 

removal.

https://cds.cern.ch/record/2814000
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mkFit in CMS - computational performance

From CMS-DP-2022-018 (*where mkFit is also used in PixelLess iteration)

● Vectorization and threading scaling tests for initial 
iteration show (according to Amdahl’s Law)

○ ~70% of operations effectively vectorized.
○ >95% of code effectively parallelized.

● Computational speedups when using mkFit:
○ Individual mkFit iterations:     Up to 6.7x building time reduction
○ Sum of mkFit iterations:         ~3.5x building time reduction

■ Track building with mkFit costs less than seeding, ≈ fitting
○ Sum of all iterations:              ~1.7x building time reduction
⇒ 25% reduction of total tracking time
⇒ Event throughput increase by 10-15% in Run-3
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1 Intel® Xeon® Gold 6130 CPU @ 2.10GHz,

local access to inputs

https://cds.cern.ch/record/2814000
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Generalizations for iterative tracking & HL-LHC:

- Geometry description & traversal

- Configuration classes / mechanisms

- Catalog approach to standard track-processing functions
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Geometry description and traversal

● Detectors split into mkFit layers
○ Potentially finer granularity than readout / construction 

■ E.g., mono/stereo treated as separate layers

● Layer is a mkFit tracking concept:
○ Track search proceeds through a sequence of layers → called a LayerPlan

■ Plans differ for barrel / transition / endcap
○ This allows for parallel processing of multiple tracks as we do not deal with individual modules

● Changes
○ On-the-fly extraction of layer envelopes/gaps
○ Add module-id information to hits to allow for

overlap hit collection
○ CMS Phase-2 geometry has tilted modules

⇒ requires module position, normal and strip
direction to be known to mkFit 
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mkFit Configuration system & classes

● Each tracking iteration needs to be separately configurable.
○ class IterationConfig → top-level configuration → which tasks to perform

■ parameters for seed & duplicate cleaning 
■ includes LayerPlan and the following classes

○ class IterationParams → tracking parameters, e.g., max # of holes, χ2 cuts; quality filter params
■ can be different for forward / backward search

○ class IterationLayerConfig → parameters specific to layers, hit search windows; one per layer!
● In CMSSW (or any other multi-threaded framework) configuration is required to 

be completely separable → instantiated and managed independently
○ Tracking iterations are driven by the CMS module system, typically configured via Python scripts

● As a compromise, all mkFit configuration can be loaded (and saved) into JSON
○ Reading of partial JSON overrides is fully supported – patch mode:

■ read full configuration from CMSSW release
■ override desired parameters with a simple additional JSON file

○ Frequently used parameters can also be set via Python (in particular, for heavy-ion operations)
○ Plugin-style configuration is still supported in stand-alone mode
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"Standard" functions

● With support of multiple iterations and Phase-2 geometry it became obvious we 
need a more flexible configuration mechanism for the following tasks:

■ seed cleaning & partitioning – per iteration
■ candidate filters: pre- and post-backward fit – per iteration
■ duplicate cleaning – per iteration
■ candidate scoring – per iteration with possible per region override

○ Stuffing extra parameters into IterationConfig & friends can not scale
● Use std::function<task_func_type> catalogs with string keys

○ Populate the catalogs via static object initializers in source files that contain the task code
■ can all be hidden in anonymous namespaces
■ function templates can be used to inject compile-time parameters
■ can even be lambdas for simple cases

○ JSON files specify the names / strings for the functions to be picked
○ After configuration loading / setup is complete the names get resolved into std::functions<> and 

become available through IterationConfig
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Binnor<>

● Fast 2D nearest neighbor search on a grid
○ Generalization of algorithm initially developed for pre-selecting hits.
○ Now also used for seed cleaning, seed partitioning, and duplicate removal.

● Specify two axes (like histogram: Nbins, min, max)
○ U(1) type supported → φ
○ Uses bit packing to minimize memory usage (and cache misses)

● Lookup structures created by sorting of registered entries
○ { start, size } pairs are stored for each bin
○ Uses Radix sort
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Single block memory allocation

● Memory for all track candidates, including hit-on-track information is acquired in 
a single allocation and distributed sequentially (dealloc is a no-op).

○ Reduce allocation and deallocation overhead while still using std::vectors.
○ Vector-gather (vgather) instruction, which is used to fill Matriplex’s with input data, breaks if hit or 

track allocations are done from different threads (probably virtual memory segment)
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Ongoing & Future work

● Use the described changes to further tune Phase-1 CMS iterations
○ Especially track scoring ⇒ use mkFit for more than 5 current iterations

● Final-fit now the most time-consuming tracking task in iterations using mkFit
○ ⇒ Explore how mkFit could be used effectively in this area

■ In parallel, this can also improve backward-fit and backward-search in mkFit

● For Phase-2 we have a proof-of-life minimal configuration
○ Geometry, LayerPlan’s and seed-partitioning are correct

■ Phase-1 functions still used for others
○ ⇒ Continue Phase-2 developments, focus on the first (Initial) iteration

● Explore Line Segment Tracking – mkFit hybrid 
○ Highly parallelizable algorithm that can run efficiently on GPUs
○ Uses Alpaka
○ Already integrated into CMSSW
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Conclusion

● mkFit is in production mode since Run-3
○ As drop-in replacement for CKF (*), used in 5 out of 12 iterations with equivalent physics

■ With time reduction for overall tracking of ~25% → for full reconstruction of >10%
■ With event throughput increase by ~10-15%

  (*) CKF = Combinatorial Kalman Filter, default for CMS track building when mkFit is not used

● Work has started to support Phase-2 tracking
○ Done: generalizations of geometry description, configuration, and standard functions
○ In progress: further modularization to support final fit.
○ This will also help us in tuning mkFit for additional CMS iterations (already for Run-3) …
○ … and makes mkFit easier to tune for potential other uses.

Related presentations:
● L. Giannini: A DNN for CMS track classification and selection

○ Poster
● P. Chang: Line Segment Tracking in the High-luminosity LHC

○ Track 2 (Online computing): Tue. May 9, 2pm
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