

Performance of track reconstruction at STCF using ACTS

Xiaocong Ai¹, Xingtao Huang², Teng Li², Yi Liu¹

¹ Zhengzhou University² Shandong University

CHEP 2023, May 09, 2023

arXiv: 2301.04306

Super Tau-Charm Facility (STCF)

STCF

Conceptual Design Report

Volume I - Physics & Detector

- A future e+e- collider in China operating at tau-charm region (s = $2 \sim 7$ GeV) with peak lumi of 0.5×10^{35} cm⁻² s⁻¹ (>x50 of current BEPCII collider) to study:
 - c-quark and t lepton physics
 - QCD and Hadron physics
 - Exotic decays and new physics beyond the SM

arXiv: 2303.15790

STCF tracking system

- The baseline tracking system includes uRWELL-based Inner Tracker (ITK) and Main Drift Chamber (MDC)
 - ITK: 3 layers, $\sigma_{r-\phi} \ge \sigma_z \approx 100$ um ≥ 400 um
 - MDC: 48 layers, $\sigma_{drift \ dist} \approx 120 \sim 130 \ um$

uRWELL-based ITK

Figures from STCF CDR (arXiv: 2303.15790)

STCF tracking requirements

Tracking low momentum particles is vital for various physics studies

- $\sigma(p)/p = 0.5\%$ with p = 1 GeV
- Tracking eff. > 50/90/99 % with pt > 50/100/300 MeV
- dE/dx resolution: < 6%

A Common Tracking Software (ACTS)

- A modern open-source **detector-independent tracking toolkit** for current&future HEP experiments (ATLAS, ALICE, sPHENIX, FASER, MUC, CEPC, STCF...) based on LHC tracking experience
- A **R&D platform** for innovative tracking techniques (ML) & computing architectures
- Modern C++ 17 (\rightarrow 20) concepts
- Detector and magnetic field agnostic
- Strict thread-safety to facilitate concurrency
- Minimal dependency (Eigen)
- Highly configurable, well documented and maintained

Github: <u>https://github.com/acts-project/acts</u> *Readthedocs:* <u>https://acts.readthedocs.io/en/latest/</u> See other talks related with ACTS:

- "Machine learning for ambiguity resolution in ACTS" by Corentin ALLAIRE
- → "Kiwaku, a C++20 library for multidimensional arrays, applied to ACTS tracking" by Sylvain Joube
- "Flexible, robust and minimal-overhead Event Data Model for track reconstruction in ACTS" by Paul Gessinger
- "Potentiality of automatic parameter tuning suite available in ACTS track reconstruction software framework" by Rocky Garg

ACTS application strategies

- ACTS is designed with the capability to work for ITk + MDC at STCF (though limited application at e⁺e⁻ colliders so far)
- STCF fullsim geometry is converted to ACTS tracking geometry using ACTS plugin
- Measurement creation: using Oscar Geant4 full sim hits as inputs, smeared with detector resolution
 - ITk : 100 um (r*phi) x400 um (Z)
 - MDC: 125 um (drift distance)

See my another talk about STCF offline software (Oscar)

ACTS tracking geometry for STCF

- Full sim geometry of STCF based on DD4hep is exported as ROOT TGeo
- TGeo then converted to ACTS tracking geometry by extended ACTS TGeo Plugin
 - Each layer of ITk is converted to an ACTS Layer with a sensitive CylinderSurface
 - Each layer of MDC containing N cells is converted to an ACTS Layer with LineSurfaces

Tracking chain

Figures from ACTS <u>readthedocs</u>

Automatic tuning of seeding parameters (See talk by Rocky Garg)

CKF for STCF

- Progressingly associate compatible hits to tracks based on prediction χ^2 : $\chi^2 = r^T (HCH^T + V)^{-1}r$
 - r:residual
 - H: projection from track parameters to measurement
 - V: measurement covariance
- Currently, left/right sign of drift circle is taken to be the same as the predicted track parameters
 - Explosive combinatorics if considering two measurements with opposite signs for each drift distance

arXiv: 2301.04306

Track finding performance with ACTS

- Above 99% efficiency for $p_T > 400 \text{ MeV}$
- 95% efficiency for pion with p_T in [50, 100] MeV
- <0.5% duplicate tracks for p_T < 130 MeV due to duplicate seeds for looping tracks
- Negligible fake tracks (<0.01%)

Track parameters resolution with ACTS

- CKF provides track parameters at specified target surface, e.g. beam line. No refitting is needed
- When $\theta = 90^{\circ}$,
 - $\sigma(d0) \approx 150 \text{ um}, \sigma(z0) \approx 400 \text{ um}$
 - $-\sigma(p_T)/p_T = 0.45\%$

Figure from ACTS readthedocs

Summary

- Efficient and accurate tracking software is needed by STCF to achieve its physics goals
 - Reconstruction of tracks with p_T down to 50 MeV is required
- ACTS has been implemented for track reconstruction at STCF
 - First application and validation of ACTS for a drift chamber
 - Promising tracking performance was achieved
 - 94% tracking efficiency with p_T in [50, 100] MeV
 - $\sigma(p_T)/p_T < 0.5\%$ with $p_T = 1$ GeV, $\theta = 90^\circ$ is achieved
- Outlook:
 - Optimization of CKF performance for a drift chamber
 - Comparison with track finding based on Hough Transform

Merits for track finding performance

A reconstructed track is assigned to the truth particle if the largest fraction of hits on the track is produced by this particle and if this fraction (P_{match}) exceeds a given assignment threshold, say 0.5.

A particle (passing some fiducial cuts) is counted as reconstructed if there is at least one reconstructed track (passing some fiducial cuts) matched to it (e.g. P_{match}>0.5), i.e.

$$\label{eq:selected-recomatched particles} \begin{split} &= \frac{N_{selected-recomatched particles}}{N_{selected particles}} \end{split}$$

A reconstructed track (passing some fiducial cuts) is referred to as a fake track if it can't be matched to a truth particle, i.e. *Fakerate*

$$= \frac{N_{selected recotracks, non-matched}}{N_{selected recotracks}}$$

If a particle (passing some fiducial cuts) is matched more than one reconstructed tracks (passing some fiducial cuts), the best-quality track among them is tagged as the real reconstructed track and others are tagged as duplicate reconstructed tracks:

$$\begin{split} Duplicate rate \\ = \frac{N_{selected recotracks, matched, duplicate}}{N_{selected recotracks, matched}} \end{split}$$

