
Optimizing ATLAS data storage: 
the impact of compression algorithms 

on ATLAS physics analysis data formats
International Conference on Computing in High Energy and Nuclear Physics

May 8 – 12, 2023 - Norfolk Waterside Marriott

Caterina Marcon, Leonardo Carminati, Peter Van Gemmeren, Alaettin Serhan Mete
On behalf of the ATLAS Collaboration

1



Motivation

2caterina.marcon@mi.infn.it

• In the coming runs, the LHC accelerator will provide higher 
luminosity of particle collisions to the ATLAS experiment: 

• more simultaneous collisions per event;
• higher demand of disk space;
• processing of a larger event rate; 

• storage will present a significant problem for HL-LHC 
computing. 

• At the lowest level, LHC data is managed using ROOT 
data framework;

• The need for efficient lossless data compression has 
grown significantly;

• Interest in profiling the compression algorithms provided 
by ROOT.



3caterina.marcon@mi.infn.it

ROOT Compression algorithms

• ROOT provides four different compression algorithms:
• Zlib;
• Lzma;
• Lz4;
• Zstd.

• All these algorithms can be tuned via the compression level option ranging from 1 to 9;

• Higher compression levels offer stronger compression;

• All the algorithms apply lossless compressions à no validation is needed;

• ROOT also provides different mechanisms to control how data are written to ROOT files 
(e.g. AutoFlush and SplitLevel).



4
caterina.marcon@mi.infn.it

Methods

• ATLAS events are stored in ROOT-based reconstruction output files (AOD) which are then processed within 
the derivation framework to produce Derived AOD files (DAOD);

• ATLAS has changed its Analysis Model which aims to reduce the disk footprint of centrally produced data 
products used for analysis;

• Two new formats have been proposed as a replacement for DAOD:
• (Run 3) DAOD_PHYS (~50 kB/event) à containing all the variables needed to apply calibrations to reco objects;
• (Run 4) DAOD_PHYSLITE (~10 kB/event) à containing precalibrated observables (see also [1]).

• Being ROOT-based formats, they natively support the aforementioned lossless compression algorithms;

• In ATLAS, performance tests of lossless compression algorithms are performed routinely when new ROOT 
features, new data products or major framework changes are available;

• This work is the first in-depth analysis on DAOD_PHYS and DAOD_PHYSLITE formats.

[1] https://indico.jlab.org/event/459/contributions/11586/



5caterina.marcon@mi.infn.it

Methods

• Files compressed with a minimal Athena tool;

• Disk-based reading tests allow collection of I/O performance metrics;

• I/O performance metrics are collected via PerfStats (tool provided by ROOT à access to a range of 
performance statistics from within the process) and dstat;

• Reading tests emulate the typical ATLAS data access by reading events from the TTree object 
accounting for ~90% of the total file size;

• For each test, a subset of 20k events has been read; and, for each event, 50% of the variables;

• Each test was rerun 5 times and standard deviations are below 3% in all cases;

• For file access, a lightweight analysis framework is used;

• All tests are carried out using ROOT 6.24, on a dedicated standalone machine.



6caterina.marcon@mi.infn.it

File size vs Compression Level DAOD_PHYS

• The original file:
• ttbar sample;
• 15.92 GB;
• AutoFlush: 500;

• The zstd level 5 configuration has been considered 
as the reference performance;

• Lzma provides the best compression (with 
reductions of about 10%);

• Lz4 results in the largest files (with increases of 
up to ~ 45%);

• The file size depends primarily on the compression 
algorithm and not on the compression level.



7caterina.marcon@mi.infn.it

File size vs Compression Level DAOD_PHYSLITE

• The original file:
• ttbar sample;
• 12.46 GB;
• AutoFlush: 1000.

• The zstd level 5 configuration has been considered 
as the reference performance;

• Lzma provides the best compression (with 
reductions of about 20%);

• Lz4 results in the largest files (with increases up 
to ~50%);

• The file size depends primarily on the compression 
algorithm and not on the compression level.



8caterina.marcon@mi.infn.it

Compression Factor vs Compression time DAOD_PHYS

• Compression time is the total walltime of the 
compression process;

• A small compression time with a large 
compression factor [1] would be the ideal 
configuration;

• Lz4 provides fast compression times but suffers 
from low compression factors;

• Lzma achieves high compression factors but 
compression times are slow;

• For Lzma, Lz4 and Zstd, the gain of compression 
level 9 flattens out à only relevant for cases where 
file size reduction is the most important metric.

[1] Compression factor = uncompressed data/compressed data



9caterina.marcon@mi.infn.it

Compression Factor vs Compression time DAOD_PHYSLITYE

• Compression time is the total walltime of the 
compression process;

• A small compression time with a large 
compression factor [1] is the ideal configuration;

• Lz4 provides fast compression times but suffers 
from low compression factors;

• Lzma achieves high compression factors but 
compression times are slow;

• For Lzma, Lz4 and Zstd, the gain of compression 
level 9 flattens out à only relevant for cases where 
file size reduction is the most important metric.

[1] Compression factor = uncompressed data/compressed data



10caterina.marcon@mi.infn.it

Compression Factor vs Reading speed DAOD_PHYS

• Reading speed = (bytes read) / (process time)
where process time is the time spent processing 
events; 

• A large reading speed with a large compression 
factor would be the ideal configuration;

• Lzma has a low reading speed;

• Lz4 is the fastest in reading;

• The reading speed depends primarily on the 
compression algorithm and not on the compression 
level.

[1] Compression factor = uncompressed data/compressed data



11caterina.marcon@mi.infn.it

Compression Factor vs Reading speed DAOD_PHYSLITYE

• Reading speed = (bytes read) / (process time)
where process time is the time spent processing 
events; 

• A large reading speed with a large compression 
factor would be the ideal configuration;

• Lzma has a low reading speed;

• Lz4 is the fastest in reading;

• The reading speed depends primarily on the 
compression algorithm;

• For lz4 the impact of the compression level is more 
significant.

[1] Compression factor = uncompressed data/compressed data



12caterina.marcon@mi.infn.it

Autoflush impact on DAOD_PHYS

• AutoFlush specifies how large a single compression 
unit of a TTree is in terms of number of events;

• The original AutoFlush value of the file is 500;
• Tests are carried out for all the compression 

algorithms setting the compression level to 5.

• Compression algorithms are more efficient with 
more data to compress;

• The original AutoFlush value (500) is reasonable: 
it shows a good performance both in terms of file 
size and reading speed.



13caterina.marcon@mi.infn.it

Autoflush impact on DAOD_PHYSLITE

• AutoFlush specifies how large a single compression 
unit of a TTree is in terms of number of events;

• The original AutoFlush value of the file is 1000;
• Tests are carried out for all the compression 

algorithms setting the compression level to 5.

• Compression algorithms are more efficient with 
more data to compress;

• The original AutoFlush value (1000) is reasonable; 
although AutoFlush = 500 shows a slightly better 
performance in terms of reading speed.



14caterina.marcon@mi.infn.it

Future steps & Conclusions

• Rerun partial event reading tests for different event and variable ratios (ongoing);
• Add memory profiling to the test suite (ongoing).

• For both types of derived files, Lz4 is the fastest in reading but results in the largest 
files: it should be considered when fast reading is more important than file size 
reduction;

• In both cases, Lzma provides higher compressions at the cost of significantly 
slower reading speeds: it should be considered when file size reduction is the key 
parameter;

• For both types of derived files, AutoFlush = 500 could be considered a good 
compromise considering both file size and reading performances.





Backup



17caterina.marcon@mi.infn.it

Computing resources

• CPU: 2x AMD EPYC 7302 (16 Core, 32 Thread)
• 256 GB RAM
• 1.92 TB NVMe SSD (Read: 3000 MB/s, Write: 1500 MB/s)
• CentOS 7



18caterina.marcon@mi.infn.it

Reading speed VS Compression Level DAOD_PHYS

• The zstd level 5 configuration has been 
taken as reference;

• Lzma has a low reading speed (with 
degradations of more than 55%);

• Lz4 is the fastest in reading (with a ~40% 
improvement);

• The reading speed depends primarily on the 
compression algorithm and not on the 
compression level.



19caterina.marcon@mi.infn.it

Reading speed VS Compression Level DAOD_PHYSLITE

• The zstd level 5 configuration has been 
taken as reference.

• Lzma has low reading speed (with 
degradations of more than 60%);

• Lz4 is fastest in reading (with ~ 40% 
improvements);

• The reading speed depends primarily on the 
compression algorithm and not on the 
compression level.


