Accelerated Particle Transport

Bk AdEPY

A SIMULATION TOOLKIT

AdePT status and plans

Accelerated demonstrator of electromagnetic Particle Transport

G Amadio, J Apostolakis, P Buncic, G Cosmo, D Dosaru, A Gheata, S Hageboeck, J Hahnfeld, M Hodgkinson, B Morgan, M
Novak, A A Petre, W Pokorski, A Ribon, G A Stewart and P M Vila

26th INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY &
NUCLEAR PHYSICS (CHEP2023) - Norfolk, May 8-12, 2023

Simulation on GPU - can we do that?

» GPUs are today widely available in HPC centers
e Silicon that we have to use to increase HEP detector simulation throughput
e A major challenge given the code complexity for particle transport (Geant4)
» Two main R&D projects spawned ~ 3 years ago
e AdePT (CERN/SFT + collaborators) & Celeritas (ECP: ORNL, FNAL, Argonne, LBL)
e Looking at the problem from different angles & learning from each other (++)

e Inter-project meetings and a community mini-workshop one year ago

> marking the completion of a first R&D phase
» We can actually run complex (LHC level) simulation on GPUs now

e Standalone, but also integrated in a Geant4-driven workflow (see this talk)

https://indico.jlab.org/event/459/contributions/11427/
https://indico.jlab.org/event/459/contributions/11818/
https://indico.cern.ch/event/1123314/
https://indico.cern.ch/event/855454/contributions/4605037/

apt-sim / AdePT Jrw
Code @ lssues 7 Pull requests 3 Discussions Actions Projects Wiki Security Insights d&
A Siabes 2 AdeP1
............................
© 70pen
© vali a la it -|)
PT/Geant4 fast-sim based interface with the latest state of the art AdePT example

vvvvvvvvvvvv

&

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

e GitHub repository, initial commit in Sep 2020, 0(10) contrfbt:rtﬂf"s ~~~~~~~~~~

» Strategy: integrate gradually features as new examples

e Coreinfrastructure, physics and geometry as external services

e Lightweight transport stepping loop evolved gradually in examples

e Notaframework approach at this point, to maximize flexibility to change/adapt/integrate
» Minimal external dependencies

e Geometry: VecGeom library, enhancing its GPU-related features

e Physics: G4HepEm library, a compact GPU-friendly port of Geant4 EM interactions
» Afirstintegration approach with Geant4 available (via fastsim hooks)

e Discussions/evaluation with ATLAS, CMS and LHCb for testing and integration

https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem

Stepping loop at a glance

» Simulationis done in steps as in Geant4
e Difference: All active tracks available are stepped at

once (exposing the parallelism to the GPU)

» Astep may be limited by physics

e AllEM physics calculations delegated to the external

G4HepEm library
> modeling all interactions for e*, e and y,

verified against Geant4

... Or geometry
e Calculations delegated to the VecGeom library
e GPU port not GPU-friendly ...
> The main bottleneck (see this talk)
> Radical changes for geometry GPU support:
main optimization work during last year

>

pre-allocated track buffer AOS

s
2.
o

Q
5 5
o)
= n 2
< - - T~ =2

- AON
o 2T XN ST £
v Prete SIS o
- ACN

o Pt SISO
< -~ NUSN NN

XX
[I[IIT+— Transportkerel H]—’DtDID
< next

active
indices

one per e+, e- and gamma, running
in separate streams

indices

. : GPU sync
[Finishlteration]

swap active and next track indices,
compact track buffer occasionally

A\

host sync

[CopyToHost]

copy simulation products (hits, leaked
tracks) back to host

36 SM GPU (consumer class)=32 CPU cores in HT
mode (dual socket CPU) for simple setups (see
backup)

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability
https://indico.jlab.org/event/459/contributions/11455/

AdePT-Geant4 integration

» AdePT only provides EM physics for e*, e and y illrack

e Cannot be used standalone for simulating a full experiment
e Inafirst phase it could be used as accelerator for the EM part, in the
same way as fast simulation models can be used in Geant4

» Developed an integration interface allowing a Geant4

Geant4

region to become the “GPU region” on CPU

e Intercepting and buffering for GPU particles sent asynchronously by
Geant4 threads
> Available from Geant4.11.], patches available for older versions

e Sensitive detector code run on device, hits+leaked tracks sent back
leakage
to host

e This approach is under evaluation by several experiments

Geant4 stack

AdePT input
buffer

energy
depositions +

particles exiting
calorimeter

Flush
e-,e+ entering
calorimeter
-

GPU-based
specialized
EM shower
simulator

J¢C53

@’%u

£

AdePT output
buffer

Geant4 stack

Integration performance

» Performance in this approach increases with :

Fraction of time spent in the GPU-accelerated
region (Amdahl’s law)
GPU buffer size (up to 5x impact)

» Performance degrades with:

Number of exchanges CPU-GPU per event
Number of CPU threads (GPU saturation, CPU
transport stalled while GPU loop running)

» Why not the fullEM on GPU?

Not limited by geometry or physics
> Lepto-nuclear processes are rare and can be
delegated to CPU
Limited by sensitive detector code GPU awareness
> Incentive to write GPU-friendly sensitive
detector scoring even for e.g. trackers

Higher is better

primaries/s

primaries/s

CMS benchmark

50 single thread pn CPU

40 cms_2018.gdml
Xeon E5-2630v3 + RTX2070

up to 5x buffer size

30 .
impact on performance

20

10
track memory

defragmentation needed
500 1000 5000

10 50 100

AdePT input buffer size

B Geant4 @ Geant4 + AdePT(EM calorimeter)

250.00 !
! .
200.00 ' > 2x throughput increase
150.00 i
1
1
100.00 /
° ' 100 x 10 GeV e /event gun,
50.00 g i 85% EMCAL
S ' AdePT buffer size = 2000
0.00 il

5 10 15 20

#workers

Towards integration with experiments

» CMS: targeting Phase 2 setup, in particular CMS HGCal

e Firststeps already made
> Loading the CMSSW-exported geometry setup in AdePT integration example
> Configure HGCalRegion to offload electrons, positrons and gammas
> Load HepMC3 file with minimum bias events
> Integrate G4HepEm in CMSSW builds, usable in an optional physics list
e Particularly challenging due to the large number of channels, so sparsity needs to be used
e Other challenges: requesting GPU resources and handling CPU-GPU exchanges in CMSSW

» ATLAS: typical “try out and adapt to my framework path”, see next

» LHCb:initial discussions and an integration project started

e Discussed the possibility to stop particles entering LHCb EMCAL and run AdePT via Gaussino
outside the Geant4 simulation step

Trying out AdePT

» Forked AdePT & modified example14(17)

Taking a test beam setup geometry GDML

> Scintillator as active element
Modifying BasicScoring.cu

> Adapting to specific Geant4 scoring code
Scanning with electron gun tilted along Y axis

> Getting same results + speedup GPU vs. CPU
Main challenge: adapting G4Step-based scoring

» Take-away & next steps

“Ideal environment to build a sensitive detector”
(working on GPU), “a couple of days effort to have
something running”

More complex scoring (e.g. Birk’s law on device)
How to avoid code duplication CPU/GPU?
Thinking about integration with FullSimLight

Total Energy deposited [MeV]

Total time reported [s]

500 x10°
.
450 L
A
o
400]
A
350— z
a00F 4 b
= [b ¥ S .
o | . "AlLTileCalTB
E { Iy e I
200— | L i |
= { P i |
F { i \
190] ; ‘x
E | |
100 | P i ‘\
E . Y i |
sof- * iy \
-] | .| \
—%00 —600 —400 —200 0 200 400 600 800
Gun y-displacement [mm]
300
Tile test beam with AdePT A
A GPU: Total time
250
CPU: Total time
200
150i Bt B Bope b Bopepe B pK
C ad #
L Vi it
10— 4 £
50— 4
[A AAok-A 5 P54 A
I I i e i o, S Y 7 O 0 G S IR I
gUO -600 —400 -200 0 200 400 600 800

Gun y-displacement [mm]

credits to D. Costanzo, A. DelllAcqua &

R. M. Bianchi

https://github.com/adept-atlas/AdePT
https://github.com/lopezzot/ATLTileCalTB/

Outlook

» A challenging project, evolving through a second phase
e Two R&D projects, AdePT and Celeritas, collaborating and working on alternative strategies
to tackle simulation on GPU

e Afirst phase completed, answering most of the initial R&D questions

> We can now run complete EM shower simulation on GPU, both standalone and
integrated with Geant4

e Efficiency bottlenecks identified

> New VecGeom project on GPU-friendly geometry surface modeling

» Main work focused on adapting the workflow to integrate with experiments

e Working with experiments on specific challenges
> framework integration, sensitive detector code requirements
e Arequired step for validating GPUs as accelerating alternative for HEP simulation

Backup

At a glance: physics

» G4HepEm: GPU-friendly compact rewrite of
EM processes for HEP

e Covers the complete physics for e”, e and y particle
transport

» Design of library very supportive for
heterogeneous simulations

e Stateless interfaces working on both CPU and GPU

e Data: physics tables and other data structures relying
on Geant4, but standalone after being copied to GPU

» Verified against Geant4 standalone

o At %olevelin the sampling calorimeter test case

o020
040

G4 Heplzn

400 Sim| llﬁed samplin; calorlmeter 50 layers of [2 3 mm PbWO4 + S 7 mm lArJ
T

Layer index

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability

At a glance: geometry

» Relying on the builtin VecGeom CUDA support
e Identical object model for CPU and GPU, non-specialized for the GPU use case
e CUDA-specific, non-portable

» Improved gradually the GPU support

e Developed index-based navigation state handling, single-precision support, faster GPU init
e Moving from a simple non-optimized to a more efficient BVH navigator
e Adopting modern CMake GPU support

» The current geometry approach is a major GPU bottleneck

e Strong motivation to develop a surface model for GPU support
> Portable less complex & less divergent code, creating a surface-based view on device

> Our major work item (see: geometry presentation)

12

https://gitlab.cern.ch/VecGeom/VecGeom/-/tree/surface_model?ref_type=heads
https://indico.jlab.org/event/459/contributions/11455/

Kernel Launch Configurations

Turing SM

Warp Scheduler + Dispatch (32 threadicik) Warp Scheduler + Dispatch (32 threadiclk)

» 1024 Threads / SM [S—— T
e 4 schedulers x 8 warps/scheduler x 32 threads/warp A LW
» 65536 Registers / SM
e 4register files x 16384 registers
e 1float = 1register, 1double = 2 registers st o 3

Register File (16,384 x 32-bit)

» 96 KB L1Data Cache / Shared Memory

» Theoretical Occupancy (—maxrregcount or _Iaunch_bounds_) INTS2 | P32 Goped INT3z | PRz TGl

e 256 regs/thread (256 threads, 8 warps) = 25% A
e 160 regs/thread (320 threads, 10 warps) = 38%
e 128 regs/thread (512 threads, 16 warps) = 50%
e 96 regs/thread (640 threads, 20 warps) = 63%
e 80regs/thread (768 threads, 24 warps) = 75%
e 64 regs/thread (1024 threads, 32 warps) = 100% ¥

.| _
: = RT QORE L—=

Higher parallelism
Faster Threads

«<

Run Time Characteristics

Particles in Flight

putting more work per batch does more work in the same
#iterations (steps)

o limited by available memory AND available tracks
hints already to using strategies to fill the gaps

o e.g. more CPU threads doing concurrent events
performance: sweet spot at about 50% occupancy
(register-hungry code)
36 SM GPU =32 CPU cores in HT mode (64 threads): a
consumer card can double the throughput of a dual
socket machi!goeo batch size

— 500 250 100

1x10°
9x10° -
8x10° -
7x10° -
6x10° -

1

1

1

1

1

1

1
5x105 - !
4x10° - :
3x10° |- :
2x10° [!
)

1

1x10°
0X100 1 1 J/ 1 /

o 100 200 300 400 500 600 700 800

Iteration Number

0s

batch size =100

. 2s .) 6s 8§ 195

batch size = 1000 Occupancy

8s 10s

25%

----l 50 %
. | !

0s

i 75%

2

| r : Gs Bs -

| , ' 100 %

'.

B Unallocated warps in active SMs
[] Compute warps in flight 14

Relative Performance per SM

Theoretical Occupancy
100% NN 75% WSS 50% 25%

ok ® sweetspotatabout50% occupancy for a simple geometry,
_ showing that simulation code is register-hungry
z e comparable throughput per SM no matter the card
g
2
@
E
1
5
-
a 10
=]
[=)]
=}
(<
=
=

5 -

)

RTX 2070 RTX 8000 V100

GPU Throughput (RTX 2070)

GPU Throughput

Memory [%] ; More occupancy means more memory accesses spill to global memory.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

100.0
Speed Of Light (SOL) [%]
Warps Per Scheduler
Occupancy

Thereticl Warps Per Scheduler [— M 25%

At warps Per S M 50%

Eligible Warps Per Scheduler l . 75 %

Performance does not improve with higher occupancy.
Issued Warp Per Scheduler | Too many global memory accesses, thread divergence. B 100%

0.0 40 8.0 12.0 16.0

16

CPU vs GPU Performance

Run Time [s]

45 |

40

35|

30

25 |

20

15

10

Geant4 N Theoretical Occupancy 100% I
G4HepEm N 75% mm—
G4HepEm+Tracking 50%
25%
Ryzen3950X 1XEPYC7282 2xEPYC7282 RTX 2070 RTX 8000 V100
CPU GPU

AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

Case Study: Thread Divergence

GPU Throughput

20,0

B Single kernel
B Splitkernels

0,0 10,0 30,0 40,0 50,0

Speed Of Light (SOL) [%]

Problem: Threads in transport kernels diverge
because of diverging interactions
— 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, ...)

Result: 17 / 32 threads active for physics + geo
29 / 32 threads active for Bremsstr.
Run time:6.4s—5.5s

Conclusion: Keeping threads coherent is key
for detector simulation
Generally difficult; stochastic processes

60,0

2850 AR et RO OB 000 +065ms 000 et ROBIE OO 870
» CPU (4)
~ CUDA HW (0000:00:08.0 - T‘I
o roorpostas.
2s - +290ms +295ms +300ms +306ms +310ms +3156ms +320ms +326ms, +330ms
» CPU (4)

~ CUDA HW (0000:00:08.0 - T/

» [All Streams] L 4

Warp State (All Cycles)
0,0 2,0 4,0 6,0 8,0

Stall Long Scoreboard

Stall Wait

B single kernel
B splitkernels

0,0 20 40 6,0 8,0
Cycles per Instruction

Stall LG Throttle

Hooking user code

» AdePT advanced examples provide a mechanism to
implement Geant4-like sensitive detector code

e Scoring type to be implemented and aliased as AdeptScoring

e Transport kernels templated on this type, calling back directly on GPU

» Fairly straightforward interfaces

e GPU data management (hits) - allocation and cleanup, copy to host
> Avery simple atomic calorimeter cell accumulator as example
e AdeptScoring::Score method to intercept current step as in Geant4

» One of the main challenges for experiment code

integration

e Cannot be identical with Geant4 code (different types)

e Working directly with experiments to understand realistic cases

AdePT

electrons.cuh

template <typename Scoring>
__global__ void
TransportElectrons(Scoring *s)

{

s->Score(track_state);

}

SimpleScoring.h

struct SimpleScoring

{

__device__ void Score(
TrackState const&);

};...

using AdeptScoring =
SimpleScoring;

4

User code

19

https://github.com/apt-sim/AdePT/tree/master/examples/Example17

