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Simulation on GPU - can we do that?

► GPUs are today widely available in HPC centers
● Silicon that we have to use  to increase HEP detector simulation throughput

● A major challenge given the code complexity for particle transport (Geant4)

► Two main R&D projects spawned ~ 3 years ago
● AdePT (CERN/SFT + collaborators) & Celeritas  (ECP: ORNL, FNAL, Argonne, LBL)

● Looking at the problem from different angles & learning from each other (++)

● Inter-project meetings and a community mini-workshop  one year ago

▹ marking the completion of a first R&D phase

►  We can actually run complex (LHC level) simulation on GPUs now
● Standalone, but also integrated in a Geant4-driven workflow (see this talk)
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https://indico.jlab.org/event/459/contributions/11427/
https://indico.jlab.org/event/459/contributions/11818/
https://indico.cern.ch/event/1123314/
https://indico.cern.ch/event/855454/contributions/4605037/


The AdePT project

► Putting together all pieces needed to run EM shower simulation on GPU
● GitHub repository, initial commit in Sep 2020, O(10) contributors

► Strategy: integrate gradually features as new examples
● Core infrastructure, physics and geometry as external services
● Lightweight transport stepping loop evolved gradually in examples
● Not a framework approach at this point, to maximize flexibility to change/adapt/integrate

► Minimal external dependencies
● Geometry: VecGeom library, enhancing its GPU-related features
● Physics: G4HepEm library, a compact GPU-friendly port of Geant4 EM interactions

► A first integration approach with Geant4 available (via fastsim hooks)
● Discussions/evaluation with ATLAS, CMS and LHCb for testing and integration
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https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem


Stepping loop at a glance
► Simulation is done in steps as in Geant4

● Difference: All active tracks available are stepped at 
once (exposing the parallelism to the GPU)

► A step may be limited by physics
● All EM physics calculations delegated to the external 

G4HepEm library
▹ modeling all interactions for e⁺, e⁻ and γ, 

verified against Geant4

► … or geometry
● Calculations delegated to the VecGeom library
● GPU port not GPU-friendly …

▹ The main bottleneck (see this talk)
▹ Radical changes for geometry GPU support: 

main optimization work during last year
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GPU sync

36 SM GPU (consumer class)≃32 CPU cores in HT 
mode (dual socket CPU) for simple setups (see 
backup)

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability
https://indico.jlab.org/event/459/contributions/11455/


AdePT-Geant4 integration
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► AdePT only provides EM physics for e⁺, e⁻ and γ
● Cannot be used standalone for simulating a full experiment
● In a first phase it could be used as accelerator for the EM part, in the 

same way as fast simulation models can be used in Geant4

► Developed an integration interface allowing a Geant4 
region to become the “GPU region”

● Intercepting and buffering for GPU particles sent asynchronously by 
Geant4 threads
▹ Available from Geant4.11.1, patches available for older versions

● Sensitive detector code run on device, hits+leaked tracks sent back 
to host

● This approach is under evaluation by several experiments
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Integration performance
► Performance in this approach increases with :

● Fraction of time spent in the GPU-accelerated 
region (Amdahl’s law)

● GPU buffer size (up to 5x impact)

► Performance degrades with :
● Number of exchanges CPU-GPU per event
● Number of CPU threads (GPU saturation, CPU 

transport stalled while GPU loop running)

► Why not the full EM on GPU?
● Not limited by geometry or physics

▹ Lepto-nuclear processes are rare and can be 
delegated to CPU

● Limited by sensitive detector code GPU awareness
▹ Incentive to write GPU-friendly sensitive 

detector scoring even for e.g. trackers
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> 2x throughput increase

cms_2018.gdml
Xeon E5-2630v3 + RTX2070

100 x 10 GeV e-/event gun, 
85% EMCAL
AdePT buffer size = 2000

up to 5x buffer size 
impact on performance

single thread on CPU
CMS benchmark
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Towards integration with experiments

► CMS: targeting Phase 2 setup, in particular CMS HGCal
● First steps already made

▹ Loading the CMSSW-exported geometry setup in AdePT integration example
▹ Configure HGCalRegion to offload electrons, positrons and gammas
▹ Load HepMC3 file with minimum bias events
▹ Integrate G4HepEm in CMSSW builds, usable in an optional physics list

● Particularly challenging due to the large number of channels, so sparsity needs to be used
● Other challenges: requesting GPU resources and handling CPU-GPU exchanges in CMSSW

► ATLAS: typical “try out and adapt to my framework path”, see next
► LHCb: initial discussions and an integration project started

● Discussed the possibility to stop particles entering LHCb EMCAL and run AdePT via Gaussino 
outside the Geant4 simulation step
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Trying out AdePT
► Forked AdePT & modified example14(17)

● Taking a test beam setup geometry GDML
▹ Scintillator as active element

● Modifying BasicScoring.cu 
▹ Adapting to specific Geant4 scoring code

● Scanning with electron gun tilted along Y axis
▹ Getting same results + speedup GPU vs. CPU

● Main challenge: adapting G4Step-based scoring

► Take-away & next steps
● “Ideal environment to build a sensitive detector” 

(working on GPU), “a couple of days effort to have 
something running”

● More complex scoring (e.g. Birk’s law on device)
● How to avoid code duplication CPU/GPU?
● Thinking about integration with FullSimLight
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ATLTileCalTB

credits to D. Costanzo, A. Dell’Acqua & 
R. M. Bianchi 

https://github.com/adept-atlas/AdePT
https://github.com/lopezzot/ATLTileCalTB/


Outlook

► A challenging project, evolving through a second phase
● Two R&D projects, AdePT and Celeritas, collaborating and working on alternative strategies 

to tackle simulation on GPU
● A first phase completed, answering most of the initial R&D questions

▹ We can now run complete EM shower simulation on GPU, both standalone and 
integrated with Geant4

● Efficiency bottlenecks identified
▹ New VecGeom project on GPU-friendly geometry surface modeling

► Main work focused on adapting the workflow to integrate with experiments 
● Working with experiments on specific challenges

▹ framework integration, sensitive detector code requirements
● A required step for validating GPUs as accelerating alternative for HEP simulation
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Backup
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At a glance: physics
► G4HepEm: GPU-friendly compact rewrite of 

EM processes for HEP
● Covers the complete physics for e⁻, e⁺ and 𝛾 particle 

transport

► Design of library very supportive for 
heterogeneous simulations

● Stateless interfaces working on both CPU and GPU

● Data: physics tables and other data structures relying 
on Geant4, but standalone after being copied to GPU

► Verified against Geant4 standalone
● At ‰ level in the sampling calorimeter test case
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https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability


At a glance: geometry

► Relying on the builtin VecGeom CUDA support
● Identical object model for CPU and GPU, non-specialized for the GPU use case

● CUDA-specific, non-portable

► Improved gradually the GPU support
● Developed index-based navigation state handling, single-precision support, faster GPU init

● Moving from a simple non-optimized to a more efficient BVH navigator

● Adopting modern CMake GPU support

► The current geometry approach is a major GPU bottleneck
● Strong motivation to develop a surface model for GPU support

▹ Portable less complex & less divergent code, creating a surface-based view on device

▹ Our major work item (see: geometry presentation)
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https://gitlab.cern.ch/VecGeom/VecGeom/-/tree/surface_model?ref_type=heads
https://indico.jlab.org/event/459/contributions/11455/


Kernel Launch Configurations
► 1024 Threads / SM

● 4 schedulers x 8 warps/scheduler x 32 threads/warp

► 65536 Registers / SM
● 4 register files x 16384 registers
● 1 float = 1 register, 1 double = 2 registers

► 96 KB L1 Data Cache / Shared Memory
► Theoretical Occupancy (–maxrregcount or  __launch_bounds__)

● 256 regs/thread (256 threads, 8 warps)   ⇒ 25%
● 160 regs/thread (320 threads, 10 warps)  ⇒ 38%
● 128 regs/thread (512 threads, 16 warps)     ⇒ 50%
●   96 regs/thread (640 threads, 20 warps) ⇒ 63%
●   80 regs/thread (768 threads, 24 warps)  ⇒ 75%
●   64 regs/thread (1024 threads, 32 warps) ⇒ 100%
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Run Time Characteristics
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batch size = 100

batch size = 1000

Unallocated warps in active SMs
Compute warps in flight

25 %

50 %

75 %

100 %

Occupancy
● putting more work per batch does more work in the same 

#iterations (steps)
○  limited by available memory AND available tracks

● hints already to using strategies to fill the gaps
○ e.g. more CPU threads doing concurrent events

● performance: sweet spot at about 50% occupancy 
(register-hungry code)

● 36 SM GPU ≃32 CPU cores in HT mode (64 threads): a 
consumer card can double the throughput of a dual 
socket machine fastest



Relative Performance per SM
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● sweet spot at about 50% occupancy for a simple geometry, 
showing that simulation code is register-hungry

● comparable throughput per SM no matter the card



GPU Throughput (RTX 2070)
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25 %

50 %

75 %

100 %

Occupancy

Performance does not improve with higher occupancy.
Too many global memory accesses, thread divergence.

More occupancy means more memory accesses spill to global memory.



CPU vs GPU Performance
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AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

32 threads

64 threads

36 SMs

72 SMs

80 SMs



Case Study: Thread Divergence
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Problem: Threads in transport kernels diverge 
because of diverging interactions
→ 13 / 32 threads active on average

Here: Split off interaction computations from 
cross-section and geometry kernels (one 
kernel for pair creation, one for ionisation, …)

Result: 17 / 32 threads active for physics + geo
 29 / 32 threads active for Bremsstr.
 Run time: 6.4 s → 5.5 s

Conclusion: Keeping threads coherent is key 
for detector simulation
Generally difficult; stochastic processes

Single kernel
Split kernels

End of 
step

Single kernel
Split kernels

V100



Hooking user code
► AdePT advanced examples provide a mechanism to 

implement Geant4-like sensitive detector code
● Scoring type to be implemented and aliased as  AdeptScoring
● Transport kernels templated on this type, calling back directly on GPU

► Fairly straightforward interfaces
● GPU data management (hits) - allocation and cleanup, copy to host

▹ A very simple atomic calorimeter cell accumulator as example
● AdeptScoring::Score method to intercept current step as in Geant4

►  One of the main challenges for experiment code 
integration

● Cannot be identical with Geant4 code (different types)
● Working directly with experiments to understand realistic cases
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electrons.cuh

template <typename Scoring>
__global__ void 
TransportElectrons(Scoring *s)
{
…
  s->Score(track_state);
}

SimpleScoring.h

struct SimpleScoring
{
  __device__ void Score(

TrackState const&);
  …
};

using AdeptScoring = 
SimpleScoring;

AdePT

User code

https://github.com/apt-sim/AdePT/tree/master/examples/Example17

