
AdePT status and plans
Accelerated demonstrator of electromagnetic Particle Transport

G Amadio, J Apostolakis, P Buncic, G Cosmo, D Dosaru, A Gheata, S Hageboeck, J Hahnfeld, M Hodgkinson, B Morgan, M
Novak, A A Petre, W Pokorski, A Ribon, G A Stewart and P M Vila

26th INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY &
NUCLEAR PHYSICS (CHEP2023) - Norfolk, May 8-12, 2023

Simulation on GPU - can we do that?

► GPUs are today widely available in HPC centers
● Silicon that we have to use to increase HEP detector simulation throughput

● A major challenge given the code complexity for particle transport (Geant4)

► Two main R&D projects spawned ~ 3 years ago
● AdePT (CERN/SFT + collaborators) & Celeritas (ECP: ORNL, FNAL, Argonne, LBL)

● Looking at the problem from different angles & learning from each other (++)

● Inter-project meetings and a community mini-workshop one year ago

▹ marking the completion of a first R&D phase

► We can actually run complex (LHC level) simulation on GPUs now
● Standalone, but also integrated in a Geant4-driven workflow (see this talk)

2

https://indico.jlab.org/event/459/contributions/11427/
https://indico.jlab.org/event/459/contributions/11818/
https://indico.cern.ch/event/1123314/
https://indico.cern.ch/event/855454/contributions/4605037/

The AdePT project

► Putting together all pieces needed to run EM shower simulation on GPU
● GitHub repository, initial commit in Sep 2020, O(10) contributors

► Strategy: integrate gradually features as new examples
● Core infrastructure, physics and geometry as external services
● Lightweight transport stepping loop evolved gradually in examples
● Not a framework approach at this point, to maximize flexibility to change/adapt/integrate

► Minimal external dependencies
● Geometry: VecGeom library, enhancing its GPU-related features
● Physics: G4HepEm library, a compact GPU-friendly port of Geant4 EM interactions

► A first integration approach with Geant4 available (via fastsim hooks)
● Discussions/evaluation with ATLAS, CMS and LHCb for testing and integration

3

https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem

Stepping loop at a glance
► Simulation is done in steps as in Geant4

● Difference: All active tracks available are stepped at
once (exposing the parallelism to the GPU)

► A step may be limited by physics
● All EM physics calculations delegated to the external

G4HepEm library
▹ modeling all interactions for e⁺, e⁻ and γ,

verified against Geant4

► … or geometry
● Calculations delegated to the VecGeom library
● GPU port not GPU-friendly …

▹ The main bottleneck (see this talk)
▹ Radical changes for geometry GPU support:

main optimization work during last year
4

TransportKernel

read write

active
indices

next
indices

pre-allocated track buffer AOS

FinishIteration

one per e+, e- and gamma, running
in separate streams

swap active and next track indices,
compact track buffer occasionally

… host sync

CopyToHost
copy simulation products (hits, leaked
tracks) back to host

si
ng

le
 s

te
p

w
hile (nactive > 0

)

GPU sync

36 SM GPU (consumer class)≃32 CPU cores in HT
mode (dual socket CPU) for simple setups (see
backup)

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability
https://indico.jlab.org/event/459/contributions/11455/

AdePT-Geant4 integration

5

► AdePT only provides EM physics for e⁺, e⁻ and γ
● Cannot be used standalone for simulating a full experiment
● In a first phase it could be used as accelerator for the EM part, in the

same way as fast simulation models can be used in Geant4

► Developed an integration interface allowing a Geant4
region to become the “GPU region”

● Intercepting and buffering for GPU particles sent asynchronously by
Geant4 threads
▹ Available from Geant4.11.1, patches available for older versions

● Sensitive detector code run on device, hits+leaked tracks sent back
to host

● This approach is under evaluation by several experiments

Geant4 stack

AdePT input
buffer

kill track

Geant4 stack

AdePT output
buffer

leakage

Flush

Integration performance
► Performance in this approach increases with :

● Fraction of time spent in the GPU-accelerated
region (Amdahl’s law)

● GPU buffer size (up to 5x impact)

► Performance degrades with :
● Number of exchanges CPU-GPU per event
● Number of CPU threads (GPU saturation, CPU

transport stalled while GPU loop running)

► Why not the full EM on GPU?
● Not limited by geometry or physics

▹ Lepto-nuclear processes are rare and can be
delegated to CPU

● Limited by sensitive detector code GPU awareness
▹ Incentive to write GPU-friendly sensitive

detector scoring even for e.g. trackers

6

> 2x throughput increase

cms_2018.gdml
Xeon E5-2630v3 + RTX2070

100 x 10 GeV e-/event gun,
85% EMCAL
AdePT buffer size = 2000

up to 5x buffer size
impact on performance

single thread on CPU
CMS benchmark

H
ig

he
r i

s
b

et
te

r

12
 c

or
es

track memory
defragmentation needed

Towards integration with experiments

► CMS: targeting Phase 2 setup, in particular CMS HGCal
● First steps already made

▹ Loading the CMSSW-exported geometry setup in AdePT integration example
▹ Configure HGCalRegion to offload electrons, positrons and gammas
▹ Load HepMC3 file with minimum bias events
▹ Integrate G4HepEm in CMSSW builds, usable in an optional physics list

● Particularly challenging due to the large number of channels, so sparsity needs to be used
● Other challenges: requesting GPU resources and handling CPU-GPU exchanges in CMSSW

► ATLAS: typical “try out and adapt to my framework path”, see next
► LHCb: initial discussions and an integration project started

● Discussed the possibility to stop particles entering LHCb EMCAL and run AdePT via Gaussino
outside the Geant4 simulation step

7

Trying out AdePT
► Forked AdePT & modified example14(17)

● Taking a test beam setup geometry GDML
▹ Scintillator as active element

● Modifying BasicScoring.cu
▹ Adapting to specific Geant4 scoring code

● Scanning with electron gun tilted along Y axis
▹ Getting same results + speedup GPU vs. CPU

● Main challenge: adapting G4Step-based scoring

► Take-away & next steps
● “Ideal environment to build a sensitive detector”

(working on GPU), “a couple of days effort to have
something running”

● More complex scoring (e.g. Birk’s law on device)
● How to avoid code duplication CPU/GPU?
● Thinking about integration with FullSimLight

8

ATLTileCalTB

credits to D. Costanzo, A. Dell’Acqua &
R. M. Bianchi

https://github.com/adept-atlas/AdePT
https://github.com/lopezzot/ATLTileCalTB/

Outlook

► A challenging project, evolving through a second phase
● Two R&D projects, AdePT and Celeritas, collaborating and working on alternative strategies

to tackle simulation on GPU
● A first phase completed, answering most of the initial R&D questions

▹ We can now run complete EM shower simulation on GPU, both standalone and
integrated with Geant4

● Efficiency bottlenecks identified
▹ New VecGeom project on GPU-friendly geometry surface modeling

► Main work focused on adapting the workflow to integrate with experiments
● Working with experiments on specific challenges

▹ framework integration, sensitive detector code requirements
● A required step for validating GPUs as accelerating alternative for HEP simulation

9

Backup

10

At a glance: physics
► G4HepEm: GPU-friendly compact rewrite of

EM processes for HEP
● Covers the complete physics for e⁻, e⁺ and 𝛾 particle

transport

► Design of library very supportive for
heterogeneous simulations

● Stateless interfaces working on both CPU and GPU

● Data: physics tables and other data structures relying
on Geant4, but standalone after being copied to GPU

► Verified against Geant4 standalone
● At ‰ level in the sampling calorimeter test case

11

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability

At a glance: geometry

► Relying on the builtin VecGeom CUDA support
● Identical object model for CPU and GPU, non-specialized for the GPU use case

● CUDA-specific, non-portable

► Improved gradually the GPU support
● Developed index-based navigation state handling, single-precision support, faster GPU init

● Moving from a simple non-optimized to a more efficient BVH navigator

● Adopting modern CMake GPU support

► The current geometry approach is a major GPU bottleneck
● Strong motivation to develop a surface model for GPU support

▹ Portable less complex & less divergent code, creating a surface-based view on device

▹ Our major work item (see: geometry presentation)

12

https://gitlab.cern.ch/VecGeom/VecGeom/-/tree/surface_model?ref_type=heads
https://indico.jlab.org/event/459/contributions/11455/

Kernel Launch Configurations
► 1024 Threads / SM

● 4 schedulers x 8 warps/scheduler x 32 threads/warp

► 65536 Registers / SM
● 4 register files x 16384 registers
● 1 float = 1 register, 1 double = 2 registers

► 96 KB L1 Data Cache / Shared Memory
► Theoretical Occupancy (–maxrregcount or __launch_bounds__)

● 256 regs/thread (256 threads, 8 warps) ⇒ 25%
● 160 regs/thread (320 threads, 10 warps) ⇒ 38%
● 128 regs/thread (512 threads, 16 warps) ⇒ 50%
● 96 regs/thread (640 threads, 20 warps) ⇒ 63%
● 80 regs/thread (768 threads, 24 warps) ⇒ 75%
● 64 regs/thread (1024 threads, 32 warps) ⇒ 100%

13

Turing SM

H
ig

he
r p

ar
al

le
lis

m

Fa
st

er
 T

hr
ea

d
s

Run Time Characteristics

14

batch size = 100

batch size = 1000

Unallocated warps in active SMs
Compute warps in flight

25 %

50 %

75 %

100 %

Occupancy
● putting more work per batch does more work in the same

#iterations (steps)
○ limited by available memory AND available tracks

● hints already to using strategies to fill the gaps
○ e.g. more CPU threads doing concurrent events

● performance: sweet spot at about 50% occupancy
(register-hungry code)

● 36 SM GPU ≃32 CPU cores in HT mode (64 threads): a
consumer card can double the throughput of a dual
socket machine fastest

Relative Performance per SM

15

● sweet spot at about 50% occupancy for a simple geometry,
showing that simulation code is register-hungry

● comparable throughput per SM no matter the card

GPU Throughput (RTX 2070)

16

25 %

50 %

75 %

100 %

Occupancy

Performance does not improve with higher occupancy.
Too many global memory accesses, thread divergence.

More occupancy means more memory accesses spill to global memory.

CPU vs GPU Performance

17
AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

32 threads

64 threads

36 SMs

72 SMs

80 SMs

Case Study: Thread Divergence

18

Problem: Threads in transport kernels diverge
because of diverging interactions
→ 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, …)

Result: 17 / 32 threads active for physics + geo
 29 / 32 threads active for Bremsstr.
 Run time: 6.4 s → 5.5 s

Conclusion: Keeping threads coherent is key
for detector simulation
Generally difficult; stochastic processes

Single kernel
Split kernels

End of
step

Single kernel
Split kernels

V100

Hooking user code
► AdePT advanced examples provide a mechanism to

implement Geant4-like sensitive detector code
● Scoring type to be implemented and aliased as AdeptScoring
● Transport kernels templated on this type, calling back directly on GPU

► Fairly straightforward interfaces
● GPU data management (hits) - allocation and cleanup, copy to host

▹ A very simple atomic calorimeter cell accumulator as example
● AdeptScoring::Score method to intercept current step as in Geant4

► One of the main challenges for experiment code
integration

● Cannot be identical with Geant4 code (different types)
● Working directly with experiments to understand realistic cases

19

electrons.cuh

template <typename Scoring>
__global__ void
TransportElectrons(Scoring *s)
{
…
 s->Score(track_state);
}

SimpleScoring.h

struct SimpleScoring
{
 __device__ void Score(

TrackState const&);
 …
};

using AdeptScoring =
SimpleScoring;

AdePT

User code

https://github.com/apt-sim/AdePT/tree/master/examples/Example17

