
traccc - A (Close To) Single-Source 
Tracking Demonstrator on CPUs/GPUs

Attila Krasznahorkay
on behalf of the Acts Parallelization R&D Team



The Acts Project

● The Acts project aims to provide HEP / 
NP experiments with a toolbox for 
charged particle reconstruction

○ It allows experiment software to have its 
own specific event data types, which can 
be used with zero copy in the Acts 
components

● Its development is heavily influenced by 
the ATLAS Experiment at this stage, but 
it is truly meant to be a collaborative 
project across experiments

○ It is on track to be used by ATLAS in all of 
its track reconstruction by the LHC’s Run-4

2

https://acts.readthedocs.io
https://atlas.cern/
https://hilumilhc.web.cern.ch/
https://acts.readthedocs.io/


The HL-LHC Computing Challenge

● The LHC experiments will collect events of much 
higher complexity with much higher rate than 
ever before in the High Luminosity LHC era

● The computing requirements of “classical 
reconstruction algorithms” increase non-linearly 
with event complexity in many cases

○ Charged particle reconstruction being a dominant part of 
this

● In order to tackle this challenge new types of 
event reconstruction methods need to be tried, 
including using devices beyond classical CPUs

3

https://hilumilhc.web.cern.ch/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


4

Track Reconstruction at High Pileup

Currently used algorithms were primarily 
designed for relatively low complexity 
collision events

https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayFirstCollisions7TeV/atlas2010-vp1-152166-316199.png


5

Track Reconstruction at High Pileup

Combinatorics blow up at the expected 
>140 p-p interactions per collision (shown 
here for the ATLAS ITk geometry)

https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayFirstCollisions7TeV/atlas2010-vp1-152166-316199.png
https://twiki.cern.ch/twiki/pub/AtlasPublic/UpgradeEventDisplays/fig_01.png


Track Reconstruction in Acts

6



Track Reconstruction in Acts

7

Discussed today



Acts

The Acts Parallelization R&D

● The development happens 
independently from the main Acts 
repository to make developments 
quicker

● Broken up into multiple, task specific 
projects

○ vecmem: Common memory management
○ covfie: Generic vector field handling
○ algebra-plugins: Small matrix linear algebra 

abstractions
○ detray: Tracking geometry handling in 

device code
○ traccc: The main repository of the R&D 

effort, holding most algorithmic code
8

traccc

detray

algebra-
plugins

vecmem

covfie

https://github.com/acts-project/acts
https://github.com/acts-project/vecmem
https://github.com/acts-project/covfie
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/detray
https://github.com/acts-project/traccc
https://github.com/acts-project/traccc
https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem
https://github.com/acts-project/vecmem
https://github.com/acts-project/covfie
https://github.com/acts-project/covfie


Implementing Performance Portability

● While the CPU and GPU algorithms 
themselves are implemented 
separately, they do share a lot of 
functions

● These all need to be implemented 
inline to:

○ Allow the host and device compilers to 
generate code from them as they need it;

○ Allow the same function to be compiled 
into multiple object files (with different 
compilers/flags) during the build.

9

https://github.com/acts-project/traccc/blob/main/core/include/traccc/seeding/track_params_estimation_helper.hpp
https://github.com/acts-project/traccc/blob/main/core/include/traccc/seeding/track_params_estimation_helper.hpp


Implementing Performance Portability

● Language specific kernel launches 
call on shared functions for the heavy 
lifting

10

https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/seeding/device/find_doublets.hpp
https://github.com/acts-project/traccc/blob/main/device/common/include/traccc/seeding/device/find_doublets.hpp
https://github.com/acts-project/traccc/blob/main/device/cuda/src/seeding/seed_finding.cu
https://github.com/acts-project/traccc/blob/main/device/cuda/src/seeding/seed_finding.cu
https://github.com/acts-project/traccc/blob/main/device/sycl/src/seeding/seed_finding.sycl
https://github.com/acts-project/traccc/blob/main/device/sycl/src/seeding/seed_finding.sycl


Floating Point Precision

● With the minimal vectorization that HEP code 
typically has, modern x86_64 CPUs have 
(virtually) the same performance for FP32 and 
FP64 operations

○ However accelerators usually do not
● On the other hand FP64 operations generally 

provide much better agreement between
CPU and GPU algorithms 🤔

● All projects are set up to use a user-defined 
floating point type

○ For the moment higher level projects select the 
type on a project level, but it shall be possible 
to select the precision algorithm-by-algorithm 
in the future

11

FP64

FP32



Status of the Project

● Many programming techniques tried 
for GPUs during development

○ But only seriously using CUDA and SYCL 
for now

● The most complicated part, CKF, is 
under heavy development at the 
moment

○ It will be the final word on whether the 
project would fully succeed

● Track fitting works, but is not 
integrated into the “full chain” of 
algorithms at this point

12

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/sycl/
https://github.com/acts-project/traccc


Measuring Performance

● On top of the many tests for the 
correctness of the output of the 
algorithms, we also build executables 
testing the throughput of the 
algorithms

○ Pre-load “cell data” for a set number of 
events into host memory;

○ Process the data into track parameters on 
possibly multiple CPU threads (using TBB);

○ Copy the results back into host memory if 
needed.

13

https://github.com/oneapi-src/oneTBB
https://github.com/acts-project/traccc/blob/main/examples/run/cuda/full_chain_algorithm.cpp
https://github.com/acts-project/traccc/blob/main/examples/run/cuda/full_chain_algorithm.cpp


Measuring Performance (Precision)

With FP64 operations one needs (with our current code) a very high-end GPU to compete with a 
high-end CPU. With FP32 operations lower-end GPUs perform much better.

14

ttbar, μ = 200

Results partially 
generated on DAS-6.

CUDA

https://www.cs.vu.nl/das/


Measuring Performance (Language)

With our current code CUDA performs better at low μ. (At high μ the difference is insignificant.) 
Though we know about current inefficiencies in both implementations.

15

ttbar, μ = 40

Results partially 
generated on DAS-6.

FP32

https://www.cs.vu.nl/das/


16

Measuring Performance (Summary)

GPUs become competitive at high pile-up. Highest performance observed on NVIDIAⓇ 
workstation GPUs so far.

ttbar, μ = 200

Results partially 
generated on DAS-6.

FP32, CUDA FP32, CUDA

https://www.cs.vu.nl/das/


Summary

● The Acts Parallelization R&D is a significant effort, providing one of the 
demonstrators for the ATLAS HLT upgrade for the HL-LHC

○ Developments will start soon on exercising the code with the simulations / geometry of the
ATLAS ITk

● The performance of the code is promising, providing a higher throughput with 
attainable GPUs than with the fastest CPUs that we could run tests on

○ What makes sense to use of course also very much depends on price and power usage, which we 
are not testing for / including in our results at the moment

● One significant development step still in the works: CKF

17



Backup

18



Performance

19

FP32



20

Performance

FP32



21

Performance

FP32



http://home.cern 

22

http://home.cern

