
TOWARDS A FRAMEWORK-INDEPENDENT 
ALGORITHM LIBRARY FOR EIC AND BEYOND

algorithms
erhtjhtyhy

SYLVESTER JOOSTEN
sjoosten@anl.gov 
on behalf of the ePIC collaboration 

CHEP 2023

Norfolk, VA - May 9, 2023

This work is supported by the U.S. Department of 
Energy, Office of Science, Office of Nuclear Physics, 
under contract DE-AC02-06CH11357.

mailto:sjoosten@anl.gov


S. Joosten2

THE EPIC EXPERIMENT AT THE EIC



S. Joosten3

EIC SOFTWARE STATEMENT OF PRINCIPLES
https://eic.github.io/activities/principles.html

▪ As part of the “Lessons Learned” 
process, the entire EIC community 
came together to create a community 
document to define our aspirations for 
software and computing for the EIC


▪ Meant to form a sound foundation to 
design our software stack


▪ This document was spread to the 
entire EIC community through several 
rounds of open suggestions and 
endorsement to ensure this is truly a 
community document

▪ Endorsed by a large group 

representing the international EIC 
community. 


▪ 100% of responses were positive!

See M. Diefenthaler’s talk from yesterday (Track 5)

https://eic.github.io/activities/principles.html


S. Joosten4

See D. Lawrence’s talk from yesterday (Track 3)



S. Joosten5

The case for framework-agnostic algorithms
CHANGING FRAMEWORKS IS EXPENSIVE!

▪ Need more rigorous separation of different 
domains:

➡ Framework

➡ Algorithms

➡ Configuration

➡ Resources

➡ User workflow

➡ …


▪ This will enhance user experience, improve 
maintainability, increase flexibility against future 
changes, reduce scope of developer 
responsibility (everyone is the ruler of their own 
realm)



S. Joosten6

Close tie-in of algorithms within their frameworks creates friction
FROM A USER’S PERSPECTIVE

▪ Need to support workflows actually needed by the Users

▪ Create, test, and run a new reconstruction algorithm with 

minimal work, support new stand-alone plugins with minimal 
friction


▪ Evaluate changes in geometry by changing only the 
geometry definition and relevant configuration file (no need to 
change/recompile everything) - again, minimize friction


▪ Get reproducible (and easily altered) reconstruction 
configurations without needing to do any additional work 
(zero-friction reproducibility)


▪ Provide domains of responsibility where Users of all 
experience levels can make meaningful contributions


▪ Distinct domains of responsibility also make clear who to talk 
to, no more single persons supporting everything at once.



S. Joosten7

EVOLVING OF THE EPIC RECONSTRUCTION STACK DESIGN
▪ Strictly modular approach 

reduces scope of each 
component


▪ Easier to onboard new users in 
any singular piece of the stack


▪ Every user can find their place 
based on experience and needs


▪ Better maintainability and more 
resilient against changing 
software needs


▪ Baked-in reproducibility by 
enforcing configuration files in 
every workflow



S. Joosten

▪ Enable algorithm sharing across 
experiments and even communities


▪ Framework agnostic algorithms

▪ Main dependencies: EDM4hep/

EDM4eic and DD4hep

▪ Showcase independence through both 

Gaudi and JANA2 integration

▪ No duplication of definitions

▪ “Zero-line” holistic framework integration

▪ Data store interactions

▪ Properties

▪ Service integration 

▪ Context

▪ “Zero-line” generic framework 

integration non-trivial

▪ Automatic testing in a no-framework 

context

CHALLENGES

8

Towards a first prototype for algorithms

DESIGN GOALS

DESIGN GOALS AND CHALLENGES



S. Joosten9

Framework integration requires predictable API
CURRENTLY IN API DESIGN PHASE

Preliminary state machine design; rigorous state validation desired.



S. Joosten10

▪ Services as lazy-evaluated singletons

▪ Support standalone minimal interface

▪ Interface has usable defaults for 

standalone operation

▪ Standalone defaults are meant to be 

overridden by the framework

▪ Prototype currently implements LogSvc 

and GeoSvc

▪ Special ServiceSvc provides 

framework with all required services, so 
it can handle the bindings

EXAMPLE SERVICE INTEGRATION
Towards a first prototype for algorithms



S. Joosten11

▪ Needed to choose between (1) providing 
algorithms with a framework allocator, (2) 
going with a purely functional approach, or (3) 
passing pointers to already existing objects


▪ Chose (3) (tuple of pointers) as it significantly 
simplifies interactions with the frameworks


▪ Algorithm definition takes an Input and an 
Output type to define the signature of 
the ::process function


▪ Special cases for std::vector<T> (to 
handle multiple objects of the same type) and 
std::optional<T> (to handle optional data, 
e.g. MC truth info in reconstruction algorithms)

EXAMPLE DATA STORE INTERACTIONS
Towards a first prototype for algorithms



S. Joosten

OUTLOOK

▪✔ Library infrastructure code ready


▪🚧 Framework-agnostic API evaluation


▪🚧 JANA2 bindings in the design phase


▪✖Algorithm migration within the ePIC stack will 
follow a successful prototyping phase

▪ Seeking “radical modularity" to minimize user 

friction 

▪🚧 Explore collaboration with Key4hep


▪🚧 Gaudi bindings being tested

Towards a first prototype for algorithms

12


