
AthenaMT: a retrospective

Scott Snyder
On behalf of the ATLAS Collaboration

Brookhaven National Laboratory, Upton, NY, USA

May, 2023
CHEP 2023

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 1 / 13



Motivation
For Run 3, ATLAS migrated its offline/trigger software to run fully multithreaded.

Since ∼ 2010, CPU clock speeds have plateaued and memory prices have not decreased much.

Processors getting more cores, so ratio of memory to cores tends to decrease.

ATLAS reconstruction requires a large amount of memory (≈ 6 GB job for serial reconstruction).

Can’t make full use of all cores simply by running multiple jobs on one machine. Need to reduce
memory required per core.

1970 1980 1990 2000 2010 2020
Year

3−10

2−10

1−10

1

10

210

310

410

510

610

U
S

$/
M

B

Historical memory prices

Source: J. McCallum <jcmit.net>

Historical memory prices

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 2 / 13



AthenaMP

For Run 2, ATLAS reduced memory requirements via multiprocessing.

Job forks subprocesses to process events in parallel. Memory is shared automatically via copy-on-write.

Yields significant memory savings but not suffi-
cient for Run 3.

Go to a fully multithreaded solution.

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 3 / 13



AthenaMT
Serial execution: Single event at a time.

Execute algorithms on each event in a fixed order set during job configuration.

MT execution: Multiple events at a time.

Execute an algorithm in an available thread when its input dependencies are available.

Different shapes: different algorithms; different colors:
different events.

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 4 / 13



Multithreaded migration

Algorithms must declare their input and
output data dependencies.

I Modifying an object read from the
event store is no longer allowed.

Rework conditions access:

I Declare dependencies.
I Implement derived conditions using

algorithms.

Avoid thread-unfriendly code: use of
statics, const-correctness violations.

Services (global singleton objects) need to
be explicitly thread-safe.

Make algorithms reentrant (no mutable
data) whenever possible.

ATLAS offline code (excluding externals)

About 5M lines of C++ code, 2000 packages,
7000 components.

Migration was a multi-year project involving
many people.

Assisted by semi-automated reports of
components yet to be migrated, plus a static
checker to identify thread-unfriendly code.Services

master nightly, January 15, 2020 (→details)

Monitoring
Converter

Trigger
Jet/MET

Tau
Muon

e/gamma
ID

Calorimeter
Other

0 10 20 30 40

Monitoring
Converter

Trigger
Jet/MET

Tau
Muon

e/gamma
ID

Calorimeter
Other

Services which must be thread-safe

Trigger
Pixel
SCT
TRT
LAr
Tile
Tau

Muon
egamma
jet/MET

Alignment
DQ

Other

Mag.Field, ACTS, Core, . . .

Cabling, CscCoolStr

G. Gaycken, M. Hodgkinson Introduction CERN, January 28, 2020 6Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 5 / 13



Thread-safety static checker
Migration helped by a custom static checker to detect possible thread-safety problems.

I Mostly relating to const-correctness and use of static data.

Implemented as a gcc plugin and enabled both for local development and release builds.

void fee(int*);

struct S {

void bar() const

{ fee(p); }

int* p;

};

x.cc:6:25: warning: Argument from member

‘S::p’ of type ‘int*’ in const member function

passed to non-const pointer argument of

function ‘void fee(int*)’; may not be thread-safe

6 | void bar() const { fee(p); }

| ~~~^~~

Can be enabled on a package-by-package basis or on entire directory trees.

Currently, almost all ATLAS offline code passes the checks.

Also has checks related to naming conventions and other coding style issues.

gitlab.cern.ch/atlas/atlasexternals/tree/master/External/CheckerGccPlugins

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 6 / 13



Coding for MT

Algorithms generally retrieve objects from the
event store, process them, and then create and
store new objects.

Algorithms generally don’t need to be explicitly
aware of threading.

But avoid unfriendly constructs like static,
const_cast.

For algorithms with more complicated
requirements, a small library of helpers is
available to factor out code important for
thread-safety.

Use atomics rather than locking when possible
to improve scalibility.

SlotSpecificObj<T>

A vector of T instances, one per slot, that can
be accessed without locking.

CachedValue<T>

A value that can be set from multiple threads,
but always to the same value. Useful for
caching results. Lockless. Also special cases for
pointers, unique_ptr.

LockedPointer<T>

A pointer along with a lock; can be returned
from an accessor.

Also have a set of container classes (bitset,
hashmaps, conditions IOV map) allowing for
concurrent, lockless reads.

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 7 / 13



Migration timeline

Plan as of mid-2018:
mid-2018: Calorimeter reconstruction working.
end 2019: Full reconstruction working.
2020: Debugging, validation, performance

improvements.
early 2021: Run 3 starts.

Actual timeline:
Early 2020: Full reconstruction running on MC;

failure rate O(10−4).
Early 2021: Failure rate O(10−6), no

irreproducibilities. Running on data.
mid-2021: Failure rate O(10−7). Performance

tests on 64-core machines.
Oct 2021: Reprocessing of Run 2 data started.

Performance improvements continue.

Progress over time at migrating components to
MT and updating code to pass the
thread-safety static checker:

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

500

1000

1500

2000

C
om

po
ne

nt
s 

m
ig

ra
te

d

0

10

20

30

40

50

60

70

80

90

100

%
 o

f p
ac

ka
ge

s 
ch

ec
ke

d

Very roughly 3–6 FTEs directly working on this
over this time period.

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 8 / 13



Debugging, testing, and diagnostics

Issues related to threading tend to be
both rare and irreproducible.

Need regular high-statistics tests.

I ATLAS ran weekly test runs of the
latest reconstruction code over about
100M events.

I Saw crashes of frequency 10−7 or
less.

Need good diagnostics in case of crashes.

I In a few special cases, we were able
to work with facility managers to
obtain core dumps or attach
debuggers to stuck jobs.

I But mostly this means stack traces.

On a crash, print out algorithms running in all
threads, followed by stack traces of all threads
generated by ROOT.

Caught signal 11(Segmentation fault). Details:

errno = 0, code = 1 (address not mapped to object)

pid = 0, uid = 0

value = (0, 0)

vmem = 1444.48 MB

rss = 808.676 MB

total-ram = 15843.8 MB

free-ram = 248.289 MB

buffer-ram= 208.316 MB

total-swap= 63187 MB

free-swap = 62330.1 MB

addr = 0

Event counter: 1

Slot 0 : Current algorithm = HiveAlgB

: Last Incident = BeginIncFiringAlg:BeginEvent

: Event ID = [0,1,t:0,l:0]

Slot 1 : Current algorithm = <NONE>

===========================================================

There was a crash.

This is the entire stack trace of all threads:

===========================================================

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 9 / 13



Robust stack dump

If the program state is corrupt, the ROOT
stack trace may fail: It allocates memory,
which will fail if the heap is corrupt.

So we first produce a ‘fast’ robust stack
dump from the faulting thread.

I Avoids dynamic memory allocation
and stdio/iostreams.

I Define an alternate stack so we can
proceed even in the case of a bad
stack pointer.

I On linux-gcc-x86 64 platforms,
modify the stack unwinder to enable
progress beyond an invalid frame
(such as from a virtual call with a
corrupt vtable).

I Includes a dump of machine registers
and offset within each DSO.

(pid=2120 ppid=8969) received fatal signal 11 (Segmentation fault)

signal context:

signo = 11, errno = 0, code = 1 (address not mapped to object)

pid = 0, uid = 0

value = (0, (nil))

addr = (nil)

stack = (0, 202000, 0x7f8d68001a40)

rip: 0033:00007f8d7432da43 eflags: 0000000000010203

rax: 0000000000000000 rbx: 00007f8d68203b20

rcx: 0042676c41657669 rdx: 0000000000000000

r08: 00007f8d68000090 r09: 0000000000000060

r10: 00007f8d7cc1e3e8 r11: 00007f8d7cc3d418

r12: 000056534400fbb8 r13: 00007f8d7327e900

r14: 00007f8d7327e940 r15: 0000000000000000

rsi: 0000000000000000 rdi: 0000565343f20060

rbp: 00007f8d7327e8a0 rsp: 00007f8d7327e5d0

gs: 0000 fs: 0000

stack trace:

0x7f8d7432da43 HiveAlgB::execute() Control/AthenaExamples/

AthExHive/src/HiveAlgB.cxx:60:24 + 0x143 [build/libs/

libAthExHive_components.so D[0x32da43]]

0x7f8d83d4ba61 Gaudi::Algorithm::sysExecute(EventContext

const&) GaudiKernel/src/Lib/Algorithm.cpp:366:23 + 0x181

[build/libs/libGaudiKernel.so D[0x34ba61]]

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 10 / 13



Heap corruption diagnosis
Heap corruption can be one of the hardest
problems to diagnose: even in the
single-threaded case, any visible crash may not
happen until long after the actual corruption.

ATLAS offline uses tcmalloc for memory
allocation by default.

Had some success in modifying tcmalloc to
catch errors like double-deletions and
overwrites.

ptr

ptr

0xdeadbeefcafefeed

In some cases, this promptly located errors that
we had been chasing by other means for weeks.

In another instance, we had a rare failure where
a free memory block was being overwritten
with a distinctive 64-bit value, as determined
from the register dump:

rax: 3fc0be57ef09fe55 rbx: 0000000151ed8d80

Wrote a custom Valgrind checker to log all
writes of this particular value:

static VG_REGPARM(2) void trace_store(Addr addr, SizeT size){

if (size == 8) {

unsigned long long val = *(unsigned long long*)addr;

if (val == 0x3fc0be57ef09fe55) {

VG_(printf)(" wrote %08lx %08llx\n", addr, val);

VG_(get_and_pp_StackTrace) (VG_(get_running_tid)(),20);

This immediately located the error (data race
in writing a std::vector holding RNG seed
information).

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 11 / 13



Results [ATL-SOFT-PUB-2021-002]

Memory and throughput for typical reconstruction on a 16-core Xeon E5-2630 (no SMT).

Includes all needed initialization, finalization, and output file merging.

250 events/thread, 〈µ〉 ≈ 50.

Results from mid-2021. Work has continued since then to improve scaling for many threads.

0 2 4 6 8 10 12 14 16 18

Number of worker threads/processes

0

20

40

60

80

100

M
e
m

o
ry

 U
s
a
g
e
 [
G

B
]

Rel. 22 MP: 3.7 GB + 3.4 GB/Worker

Rel. 22 MT: 5.4 GB + 0.3 GB/Thread

Rel. 22 Serial: 5.9 GB/Job

 PreliminaryATLAS

0 2 4 6 8 10 12 14 16 18

Number of worker threads/processes

0

0.2

0.4

0.6

0.8

1

1.2

E
v
e
n
ts

 p
e
r 

s
e
c
o
n
d
 (

T
o
ta

l)

Rel. 22 Ideal

Rel. 22 MT

Rel. 22 MP

 PreliminaryATLAS

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 12 / 13



Summary

In order to reduce memory required per
core, ATLAS has migrated the 5M-line
offline code base to run multithreaded.

Roughly a five-year project.

Resulting performance is excellent!
Memory requirements scale at about 0.3
GB / thread. CPU scaling is very good up
to at least 8 threads.

Performance improvements continue.

In production for Run 3 and Run 2
reprocessing.

A solid base for work leading to supporting
heterogenous systems for Run 4.

If you are starting a new C++ code base, try
to make it thread-friendly from the start!

Take const seriously

Avoid const_cast.
Methods which process data show take const

inputs, and usually be const themselves.

Avoid gratuitous use of static and global
state.

Singleton objects should not contain event
data.

Scott Snyder (BNL) AthenaMT: a retrospective May, 2023 13 / 13


