

Bringing Science Solutions to the World

Performance of GNN-based tracking for ATLAS ITk

Xiangyang Ju On behalf of the ATLAS Collaboration CHEP 2023, Norfolk Virginia

8 May 2023

Physics

Particle tracking challenges

It's computationally expensive

- Tracking takes ~40% of total reco time in ATLAS
- Existing track finding algorithm (e.g. CKF) does not scale well, and cannot be easily ported to GPUs
- Ongoing efforts to reduce the tracking reco time

- Pileup <µ> increased from ~50 to ~200
- Very dense environment: O(10 k) particles

ATLAS Inner Tracker (ITk) Upgrade

Goal: the ITk should have the same or better performance as the current detector for HL-LHC

S. Diez, Silicon strip staves and petals for the ATLAS Upgrade tracker of the HL-LHC

Pixel subsystem:

- Near beam, finer segmentation needed to separate tracks → drives impact parameter resolution
- Pixel pitch is $50x50 \ \mu m^2$ (some $25x100 \ \mu m^2$)
- One spacepoint $\leftarrow \rightarrow$ One cluster

Strip subsystem:

- Covers large area, further from the beam \rightarrow drives momentum and η resolution
- Sensitive silicon sensor elements long and skinny (75.5 µm x 24.1 or 48.2 mm)
- Double-sided sensors with a stereo angle
- One spacepoint ←→ Two clusters

The Graph Neural Network-based pipeline

The pipeline presented in the CTD 2022, See C. Rougier's talk.

- A tracking graph: nodes are spacepoints and edges are possible connections between nodes. *True edges* are connections of nodes from the same particle of interest
 - We are targeting primary particles with $p_{\tau} > 1$ GeV, no electrons, no secondaries
- Graph Neural Network is an Edge Classifier that assigns scores to edges

CTD 2022 Graph Neural Network

It contains three major components.

Graph Encoder

Message Passing Module

 \rightarrow We use the same Message Passing modules for each message passing step

Graph Decoder

 \rightarrow We apply a simple MLP to edges to get edge scores

• Map node inputs into a latent space

$$v_i' \leftarrow \phi^v(v_i)$$

• Map edge inputs into a latent space

$$e_k' \leftarrow \phi^e(e_k)$$

$$\begin{array}{c|c} & \text{Node} \\ \text{Network} \end{array} \quad v_i' \leftarrow f^v(v_i^0,v_i,\bar{e}_i^r,\bar{e}_i^s) \\ & \text{Where } \bar{e}_i^{r/s} \leftarrow \sum_{(r/s)_k=i}(e_k,e_k^0) \\ & \text{Edge} \\ & \text{Network} \end{array} \quad e_k' \leftarrow f^e(e_k^0,e_k,v_{r_k}',v_{s_k}') \end{array}$$

Call for GNN improvements

GNN did not perform well in the Strip barrel region

While attaining good per-edge efficiency (>98%), the per-edge purity is only about 50% for the strip barrel region

Per-edge efficiency: true edges passing the threshold / total true edges

Per-edge purity: true edges passing the threshold / total edges passing the threshold

We explored the **heterogeneity** in the GNN-based track finding.

GNN Per-Edge purity evaluated for different detector regions with a score threshold of 0.5

Heterogeneity in GNN tracking

Heterogeneous data:

- Pixel detector: one spacepoint = one cluster, [r, φ, z]
- Strip detector: one spacepoint = two clusters, $[r, \phi, z]$ + cluster one + cluster two

In CTD 2022 results, the two cluster information for the strip SP was not used.

Heterogeneous GNN:

- In the Graph Encoder, use different MLPs to encode Strip and Pixel spacepoints differently
- Or / And in the message passing, encode messages differently for Pixel and Strip spacepoints

Explore heterogenous data

Key idea: Add cluster features to spacepoint features

- For Strip spacepoints in barrel region, add the two associated cluster information
- For Pixel spacepoints and Strip spacepoints in endcap region, repeat its features to reach the same length

The GNN model is re-trained with the "extended node features". We call the trained model as the "Extended GNN" $(r_{cluster1}, \varphi_{cluster1}, \eta_{cluster1}, \eta_{cluster1}, \eta_{reco}, \varphi_{reco}, \tau_{reco}, \eta_{reco}, \tau_{cluster2}, \varphi_{cluster2}, \tau_{cluster2}, \eta_{cluster2})$

In the Extended GNN, we use different Message Passing Modules for each message passing step

 $(r_{reco}, \varphi_{reco}, z_{reco}, \eta_{reco}, r_{reco}, \varphi_{reco}, z_{reco}, \eta_{reco}, r_{reco}, \varphi_{reco}, z_{reco}, \eta_{reco})$

CTD 2022 GNN vs Extended GNN

They use the same inputs graphs constructed from Module Map

Extended GNN

CTD 2022 GNN

Extended GNN results in similar Per-Edge efficiencies

Extended GNN visibly improves the Per-Edge **purities** in Strip barral region

Track reconstruction efficiency

Use the Extended GNN for graph segmentation

- Thanks to the much higher Per-edge purity, the portion of tracks reconstructed with the Connected Component is increased
 - Connected Components can be executed in GPUs via the cuGraph

GNN track reconstruction efficiency calculated with two matching schemes:

- Red circle ("standard matching") : > 50% of the spacepoints in the reconstructed track are matched to a true track
- Black triangle ("strict matching"): 100% of the spacepoints in the reconstructed track are matched to a true track

Track content comparison

We use the default ITk reconstruction in ATLAS as a reference

- GNN tracks have the same number of Pixel hits per track as the default ITk reconstruction
- GNN tracks have less Strip hits per track, possibly due to
 - missing clusters (those not forming a spacepoint will never enter GNN track candidates)
 - wrongly assigned clusters

Track parameter resolution comparison

We use the default ITk reconstruction in ATLAS as a reference

- GNN track candidates are fitted by the standard global x2 fitting algorithm
 [ATL-PHYS-PUB-2019-014] implemented in the Athena framework. The same algorithm used for the default ITk construction
- GNN track finding yields similar track parameter resolution as the default ITk reconstruction algorithm
- Fitted GNN tracks are readily usable for downstream tasks

Relative track p_T resolution is measured as the multiplication of p_T^{true} and the RMS of the pull distribution of $(q/p_T^{reco} - q/p_T^{true}) / q/p_T^{true}$.

Explore Heterogeneous GNN

We compare the extended GNN with the heterogeneous GNN

Experimental setup

- Graphs constructed from the metric learning
- Use the "extended spacepoint features" without eta
- But *do not* pad pixel spacepoints with its features to reach the same length

Heterogeneous GNN

• Use a heterogenous Graph encoder

Pixel SP
$$[r, \phi, z, r_{cluster}, \phi_{cluster}, z_{cluster}] \qquad MLPs$$

$$[r, \phi, z, r_{cluster1}, \phi_{cluster1}, z_{cluster1}, r_{cluster2}, \phi_{cluster2}, z_{cluster2}] \qquad MLPs$$

Heterogeneous GNN vs Extended GNN

While keeping the same per-edge efficiency (98%), we compare their per-edge purities

- The average total purity is 94% for both models
- Adding model heterogeneity results in up to 11% improvement in GNN per-edge purity in the Strip barrel region, with ~1% loss in the Pixel subsystem
- Room for improvement e.g. to try heterogenous message passing

Conclusion

- The GNN-based pipeline provides not only competitive track efficiency but also high quality track parameter resolutions.
- The GNN-based track finding is integrated into ACTS and ATLAS tracking framework, enabling us to use the existing tools to perform track fitting and evaluate tracking performance
- Significant improvement are achieved for the Graph Neural Network
 - While keeping the same efficiency, the extended GNN improved the edge-level purity by more than 30%. The high per-edge purity simplifies the graph segmentation
- With the above improvements, the GNN-based particle tracking steps steadily towards the production-level quality
- We are investigating further different heterogeneous GNN models and their impacts
- We developed a CommonFramework for GNN tracking <u>https://github.com/gnn4itkteam/commonframework</u>