
Carlos Erice on behalf of

the CMS Collaboration

GPU-based algorithms for primary
vertex reconstruction at CMS

CHEP 2023,

May 8th 2023, Norfolk

The Phase II of the LHC will lead us into the
high-luminosity regime:

→ An instantaneous luminosity increase: more data
taken per second. We will need a triggering system with
a fast an efficient response to guarantee physics
coverage. Challenges to the trigger/DAQ system.

→ And an increase in integrated luminosity: more data
taken overall. Increasing the computational load for
processing both data and -comparable amounts of-
simulation. Challenges to the offline processing chain =>
Focus of this talk.

Both have a computational impact: need to do R&D to
optimize our resource usage will keeping physics
performance.

HL-LHC challenges

2

→ CMS -offline- reconstruction takes ~⅔ of the pie in terms of resource usage. Optimize the
reconstruction algorithms is key in the HL-LHC program.

→ Amongst it, vertex reconstruction roughly takes ~8-10% of the reconstruction time: How can we
improve it?

Computational challenges

3

→ CMS vertexing starts from a set of tracks
(~4000-8000 at Phase II of the LHC). Then proceeds
into two steps:

1) Clustering: group together close-by tracks in
cluster candidates. The algorithm used is
deterministic annealing.

2) Fitting: fit vertex properties of those clusters
from those of the tracks. The algorithm used
is Adaptive vertex fitting algorithm.

Both involve computations across ~1000s of
tracks and ~100s of vertices.

Can we do better than the Legacy algorithms? Can
we do an heterogeneous implementation? What
can we learn from it?

Vertexing - The overall idea

4

z

z

z1 z2 z3 z4

C

F

z

https://cds.cern.ch/record/865587/files/p287.pdf
https://cds.cern.ch/record/1027031?ln=es

Deterministic annealing - at a glance

5

D
ecrease T

z

Deterministic annealing (DA) is based on
optimizing an energy (assignment)
function with a penalization entropy term:

Tracks
Vertices

Starting at very high temperature (T) all tracks are assigned to one single cluster.
As we lower T, splitting the cluster into several (increase K) becomes beneficial.
Iteratively update assignment probabilities Pik while lowering T provides a final robust estimation
of the clusters.

DA - The heterogeneous architecture solution

6

Analytical formulae for estimating Pij, zk at
each iterative step exist but they are
computationally intensive.

Many simple operations in parallel => A
perfect place for the usage of GPUs.

Needs to be estimated
~NTracksx NVertex of times
in every loop iteration!

Ideally we would use “one GPU thread=one track” to ensure maximum parallelization, but this
would consume full resources of most commercial grade GPUs. Instead, the problem is simplified:

“Multiblock” approach: sort tracks along z, then split them in overlapping blocks of ~512 tracks:

→ Limits computational complexity significantly, allows for multithreading “per-block”.

→ Blocks can run asynchronous => Better usage of device resources.

→ Matches the “block” organization of threads in GPUs!

Adaptive vertex fitting (Legacy Run II algorithm) is quite
complex: involves iterative annealing+kalman filter-like steps.

We searched for an alternative solution that could improve
performance and easily run both in CPU and GPU.

Fitting - Weighted means fitter

7

Weighted mean fitter:

→ Vertex position along i-th coordinate
determined iteratively with a weighted
mean of i-th coordinates of the tracks,

→ Using the error of the track’s impact
point along i-th coord. as weight

→ Plus outlier rejection: tracks that are 3σ
away from the vertex candidate are
rejected.

Formulae are run iteratively on each cluster (vertex
candidate) until converging to “fitted” parameters.

x

z

The clustering algorithm has been implemented as part of the CMS reconstruction chain for running in
both CPU and using GPU acceleration based on CUDA. We find them to be fully consistent in terms of
the properties of the reconstructed vertices. Here: coordinates of ~2000 events simulated at Phase II
conditions using the CPU (X axis) and GPU (Y axis) implementations.

Implementation and consistency

8A first version of the fitting, currently running on CPU hardware, has also been implemented.

Physics performance

9

Efficiency: proportion of simulated
vertex that are matched to a fully
reconstructed one

Fake-rate: proportion of
reconstructed vertex not matched
to a simulated one.

Performance measurements
on samples simulated on
Phase II conditions show
the overall improvements
obtained by the new
algorithms:

→ Overall ~5-6% in efficiency,
as there are now ~twice the
opportunities of
reconstructing a vertexing due
to the multiblock overlap

→ The corresponding increase
in fake-rates is mitigated due
to the additional rejection
power provided by the new
fitting step.

Note: new fitting slightly larger errors that leads to an increased amount of gen-reco matching

512 track block: split the 10000 tracks in 40 overlapping blocks
40 blocks x 10 vertices x 500 tracks => 2•105

 Pij values
- Effectively we are transforming the problem of

clustering at <PU> ~ 200 into 40 overlapping
problems of clustering at <PU> ~ 10.

Why do we gain even in CPU?

10

How much
blocks overlap

How many tracks
per block

CPU clusterizer + CPU fitter Performance increases already in the CPU due to the
decrease in the complexity of the algorithm as we
dramatically decrease the number of track-vertex
association needed:

Single block:
~200 vertices x ~10000 tracks => 2•106

 Pij values

Timing performance (I)

11

How much
blocks overlap

How many tracks
per block

W
orking point

U
sed in eff

/fakerate plots

CPU clusterizer + CPU fitter GPU clusterizer + CPU fitter

The main motivation of the updated algorithms, we want to improve the ~900 ms/evt of the current algorithms.
→ CPU measured in a Intel Skylake Gold CPU with a single process:
→ GPU measured with nvProf in a Tesla T4 running CUDA:

Up to ~17x speed increase with respect to Legacy algorithm

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Clear distinction into the two
measurements quoted in the GPU case:

1) “Pure computational time” (full
lines): includes all the time the
GPU/CPU are actually doing
computations.

2) “Including copying” (dotted lines):
includes time spent copying
information between the GPU and
CPU hardware (i.e. input to the
clustering and output from clustering
to fitting).

We include both for completeness, but in a
realistic Phase II setup the whole CMS
reconstruction chain would run in GPU =>
Just depend on the pure

Timing performance - To copy or not to copy

12

W
orking point

U
sed in eff

/fakerate plots

GPU clusterizer + CPU fitter

Summary

13

- Presented an optimized algorithm designed for running offline vertexing in
the CMS experiment during the Phase II of the LHC.

- A design based on compatibility with heterogeneous architectures shows
improvements on both physics performance and in timing. Leading to up to
~6.3x faster algorithm.

- Greater improvement if previous/posterior steps of the CMS
reconstruction chain are offloaded to heterogeneous architectures.

- Reduced if one takes into account pricing differences between CPU and
GPU hardware.

- Several plans to provide further improvement towards Phase II:
- Include timing information from the -new- MTD detector.
- Usage of portability libraries (Alpaka, see Andrea’s talk) to profit from

other non-nVidia hardware.

References

14

[1] Chabanat, E; Estre, N; Deterministic Annealing for Vertex Finding at CMS, 2005, 10.5170/CERN-2005-002.287

[2] Frühwirth, R ; Waltenberger, W. ; Vanlaer, P.; Adaptive Vertex Fitting, 2007, CMS-NOTE-2007-008

[3] CMS Collaboration; Primary Vertex Reconstruction for Heterogeneous Architecture at CMS, 2022,
CERN-CMS-DP-2022-052

https://cds.cern.ch/record/865587
https://cds.cern.ch/record/1027031?ln=es
https://cds.cern.ch/record/2839922?ln=en

Backup

15

