CMS-TDR-021

# Overview of the HL-LHC Upgrade for the CMS Level-1 Trigger



<u>Claire Savard</u> on behalf of CMS Collaboration

University of Colorado, Boulder

11 May 2023





### High Luminosity Large Hadron Collider

• Increase statistics to search for new and rare physics





Dark matter signals

#### CMS at the HL-LHC\*

#### L1T and HLT/DAQ

- Tracker Tracks in L1T at 40 MHz
- L1T acceptance:  $100 \rightarrow 750 \text{ kHz}$
- HLT output at 7.5 kHz
- 40 MHz Scouting: Real time analysis
- L1T latency:  $4 \rightarrow 12.5 \ \mu s$

#### Calorimeter Endcap

- High Granularity Calorimeter (HGCAL)
- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

#### <u>Tracker</u>

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to  $\eta \simeq 3.8$

#### **Barrel Calorimeters**

- ECAL crystal granularity readout at 40 MHz with precise timing for  $e/\gamma$  at 30 GeV
- ECAL and HCAL new Back-end boards

#### Muon Systems

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC  $1.6 < \eta < 2.4$

#### Beam Radiation Instr. and Luminosity

- Bunch-by-bunch luminosity measurement:
- 1% offline, 2% online

#### MIP Timing Detector

- Precision timing with:
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes



## CMS Level-1 Trigger (L1T)

- Initial event selection in real time
- Reconstruction of physics objects
- FPGA-based hardware
- Goals:
  - Maintain current physics reach with 200PU
  - Extend to new signatures with advanced techniques
    - Ex: machine learning





CMS-TDR-021

APx-F

X20

BMT-L1

**NEW** 

#### L1T Architecture



Gī

**CMS-TDR-021** 

### L1T Upgrades





#### L1T Upgrades: Calorimeter and Muon Triggers

- Calorimeter trigger:
  - Higher granularity for high-resolution clusters and identification variables
  - Build  $e/\gamma$ ,  $\tau_h$ , jets, energy sums
- Muon trigger:
  - Extended coverage  $|\eta| < 2.4 \rightarrow 2.8$
  - Muon track finders separated in barrel, endcap, and overlap regions





### L1T Upgrades: Correlator and Track Triggers

#### • Global track trigger:

- Gets full tracker tracks from Track Finder
- Build track objects: jets, vertices,  $H_T$

#### • Correlator trigger (Particle Flow):\*

- Particle Flow identifies and reconstructs all particles with sub-detectors info
- Pileup Per Particle Identification (PUPPI) used to mitigate PU effects
- Reconstructs hadronic jets,  $E_T^{miss}$ ,  $\tau_h$ ,  $H_T$ , ...

\*See Sioni Summers talk on Particle Flow





efficiency

### L1T Upgrades: 40 MHz Scouting

- Collects subset of trigger primitives and objects through spare optical links
- Uses:
  - Monitoring, diagnosis, lumi measurements
  - Find correlations among contiguous BX
  - Analyze signatures unreachable through standard triggers





### L1T Objects





#### Sub-Detector Example: GTT

- Track inputs:  $\{\frac{q}{R}, \phi, \tan(\lambda), z_0, n_{stub}, \text{ quality } \dots\}$
- Global Track Trigger (GTT) builds track objects
  - $H_T$ ,  $E_T^{miss}$ , primary vertex, jets







#### Algorithm Example: NN Vertexing



Useful for pile-up mitigation, important for Particle Flow



Weight Network

Pattern Network

Assoc. Network

#### L1T Physics Reach





#### 14

CMS-TDR-021

PU200 (14 TeV)

CMS-PAS-FTR-18-018

L1 Rate 25 kHz

 $B [H(125) \rightarrow \phi \phi \rightarrow 4b] = 10^{-5}$ 

Prompt Tracks, m = 30 GeV

Prompt Tracks, m = 60 GeV

Ext. Displaced Tracks,  $m_{\phi} = 15 \text{ GeV}$ Prompt Tracks,  $m_{\phi} = 15 \text{ GeV}$ Ext. Displaced Tracks,  $m_{\phi} = 30 \text{ GeV}$ 

Ext. Displaced Tracks, m = 60 GeV

**CMS** Phase-2 Simulation Preliminary

\_220 ه

Events / 3 180

160

140

## Physics Reach Example: Exotic Higgs

- h  $\rightarrow \phi \phi \rightarrow 4j$ , LLP
- L1 extended tracking builds displaced tracks and jets
  - Also calo timing, displaced STA muons, etc.
- Phase 2,  $H_T$  trigger rate



### Summary



- HL-LHC increases statistics, increases pile-up
- L1-Trigger upgraded for more complicated events/increase acceptance
- Upgrades allow reconstruction of more sophisticated, offline-like, objects to improve triggering
- Physics reach extended with better triggering algorithms





# Backup



### L1T Upgrades: Particle Flow

- Layer 1
  - Produces particle-flow (PF) candidates; constructed from the matching of calorimeter clusters and tracks
  - Pileup Per Particle Identification (PUPPI) algorithm mitigating the degradation of the energy resolution due to PU
- Layer 2
  - Building and sorting final trigger objects
  - Applying additional ID and Isolation
- PF+PUPPI: needed to sustain Run 2 Jets & MET thresholds





#### L1T Upgrades: Track Finder

- Reconstruction of tracker tracks at 40 MHz
  - $\frac{q}{R}$ ,  $\phi$ ,  $\tan(\lambda)$ ,  $z_0$ ,  $n_{stub}$ , quality...





Stubs

(pair of hits)

Tracklets

(2 stubs in a row)

### L1T Upgrades: Global Track Trigger

- Takes in tracker tracks, builds high-level physics objects
  - $H_T, E_T^{miss}$ , primary vertex







### L1T Upgrades: Track Quality GBDT

**In:** tracker track properties

**Out:** likelihood track originated from true particle



| Model | Python AUC | HLS AUC | Latency (clk) | LUT % | FF %  | DSP % | VIIQP     |
|-------|------------|---------|---------------|-------|-------|-------|-----------|
| NN    | 0.985      | 0.982   | 8             | 0.104 | 0.029 | 0.292 | 240 MU-   |
| GBDT  | 0.986      | 0.981   | 3             | 0.140 | 0.027 | 0.0   | 240 WIIIZ |



#### L1T Physics Reach: Rare B-meson decays

- $B_s^{0} \rightarrow \Phi(K^+K^-)\Phi(K^+K^-)$ 
  - A rare FCNC process forbidden at the tree level in the SM
  - Trigger on the fully hadronic final state with L1 Tracks
  - Reconstruct Φ candidates using pairs of oppositely charged tracks originating from the same vertex
  - Then reconstruct  $B_s^{\ 0}$  candidates from pairs of  $\Phi$  candidates originating from the same vertex



