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We did not box ourselves to one or the other


We primarily focused on developing algorithms that can 
run in parallel on processors capable of parallelism


Once we developed the algorithm to a more mature 
state, we implemented our work on GPUs


But the algorithm itself is parallel in nature and 
potentially possible to exploit other architecture
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each pair is one module

gap = 2 - 4 mm
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transverse plane
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Possible 
trajectory 
window



10

Chang
Florida

LSTLST

0.8 GeV momentum trajectories 
(+ and - charge)

inside trajectory window


• We want to consider this 
pair of hits! 

Possible 
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The good candidate pair 

becomes a Mini-Doublet (MD)
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In a given module, 
there are multiple 
candidates to try

Each module can be processed in 
parallel at a large scale on a GPU 

(there are O(30k) modules)


⇒ Performs processing >0.8 GeV MDs 
in ~2 ms for PU200 event on A100
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All hits in all modules

High occupancy 
number of hits



14

Chang
Florida

LSTLST
Mini-Doublets only

Mass reduction in 
occupancy


(reduction of ~1 order 
of magnitude per 

module)
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Creating Line Segments

Create Module Map 
based on helices and 

simulation

reference 
module

connected 
modules
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Connecting Line Segments

Two Line Segments can 
then be connected to 
form a Triplet of mini-

doublets (T3)


We apply geometric 
constraints to require 
them to be helix-like 
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If the triplets do not 
look like a good 

candidate they are not 
created
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Connecting Line Segments

Triplet formation can be 
performed in parallel on 

GPUs
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Two T3’s can then be 
connected to form a 
Quintuplet of mini-

doublets (T5)


We apply geometric 
constraints to require 
them to be helix-like 
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Creating Quintuplets

If the quituplets do not 
look like a good track 

candidate they are not 
created
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Creating Quintuplets

Quintuplet formation 
can be performed in 

parallel on GPUs
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Inner 
tracker

Inner tracker provides “mini”-tracks with three to four hits

⇒ use these “seeds” as equivalent as a Line-Segment called “pixel LS” (pLS)

pLS
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Types of track candidates built

pLS

T3

T5

pLS

pLSs are then connected with 
T3’s and T5’s to form pT3, 

and pT5
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Types of track candidates built

pLS

T3

T5

T5

pLS

T5’s can be standalones 
even if no matching 

pLSs are found


(cf. T5’s have 10 hits, 
and can naturally track 

displaced tracks)
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Adding unused pLS

outer tracker

Not every pLSs are consumed by outer tracker and 
unused ones are useful for short or forward tracks
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{pT5s, …, pT3s, …, T5s, …,  pLSs, …, }

Track Candidate Collection

Outer Tracker Hits, Inner Tracker Seeds

MDs ~2 ms

LSs ~1 ms


T3s ~3-4 ms

T5s ~3-4 ms

pT3s ~2 ms

pT5s ~2 ms

TCs ~3 ms


Total ~ 17 ms / evt

Measured on single 
A100 at HiPerGator AI 
of University of Florida

LST Algorithm
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{pT5s, …, pT3s, …, T5s, …,  pLSs, …, }

Track Candidate Collection

Outer Tracker Hits, Inner Tracker Seeds

MDs ~2 ms

LSs ~1 ms


T3s ~3-4 ms

T5s ~3-4 ms

pT3s ~2 ms

pT5s ~2 ms

TCs ~3 ms


Total ~ 17 ms / evt

If multi-streaming to have 
multiple events in flight

Total ~ 9.6 ms / evt

Measured on single 
A100 at HiPerGator AI 
of University of Florida
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Fake Rate of 
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Duplicate Rate of 
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First we use standalone setup with rough estimate of track parameters to 
assess performance.


(Full result with integration to CMS Software featured in later slides.)
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First we use standalone setup with rough estimate of track parameters to 
assess performance.


(Full result with integration to CMS Software featured in later slides.)

Performance for displaced tracks

displaced 
muon gun 

sample

Work in progress

Out-of-the-box (with no 
configuration change) 

LST covers good amount 
of displaced tracks


Can be improved further
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Preliminary LST result from CMSSW

Work-in-progress
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Next, we use integrate the LST algorithm to CMS Software (CMSSW) 
workflow. Track fitting is performed and “loose” track selection applied.
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Performance for displaced tracks
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Next, we use integrate the LST algorithm to CMS Software (CMSSW) 
workflow. Track fitting is performed and “loose” track selection applied.

Work-in-progress

Out-of-the-box (with no 
configuration change) 

LST covers good amount 
of displaced tracks


Can be improved further
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Presented LST algorithm for HL-LHC using GPUs


Shows good performance on par w/ default tracking


Naturally extends to displaced tracks


Integration / tuning / optimization on-going
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Backup
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Timing vs. N-streaming
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Timing breakdown pie-chart


