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@ Increase reliability of the data

In data science, the results of data analysis directly depend on the
quality of the data. Monitoring data online can improve the
reliability of data.

@ Find and fix issues in near real-time.

Online data-quality monitoring can find problems in data while data
taking. In experimental physics, it is possible to take a month or
longer to obtain data. By monitoring the data, we can improve the
stability of the detector by detecting issues in the data
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To deal with online data, our goal is :

@ detects when a change occurs.

@ determines what kind of change occurs, e.g., a sudden change
occurs or linear gradual change occurs.

© Autonomous calibration using basedline calibrations.
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Multiscale method
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@ Using multiscale basis to represent the data and the coefficient of
basis store the information for the data.
(2) If no change happens, the amplitude of the coefficient of the
multiscale basis is small.
(b) If a change happens, the amplitude of the coefficient of the
multiscale basis is big.

change in raw data set — outlier in coefficients set

@ Detect outlier in the coefficients set. The outlier coefficients indicate
that changes happen in its support.
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For a fixed scale parameter k and the data set
[dja dj+1a BRRE) dj+2k71:| )

the coefficient for this data is defined as

2k—1

1
3 = 22k Z di+itk(xi), (1)
i=0

where 1y is the k-th level basis, the x; := 2% + % are the corresponding
discrete nodes, [dj, djy1,...,dj p_1] is the support of the coefficient af.
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The basis function 1 defined on [0,1] in (1) satisfies the following
properties :

@ Vanishing moment [1] property of order n, that is

1
/1/J(x)xjdX:0,j:O,l,...,n—l. (2)
0

@ The nonzero part of 1 is a subset of [0, 1].
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> piecewise constant test function

h(x) =

1, 0<x<1/2
~-1, 1/2<x<1

> piecewise linear test function

J1-4x, x€]0,3]
v = {4x -3, x€ (%,21] )
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Online multiscale algorithm
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The structure of the online multiscale algorithm can be described as
following

dO ) dl
——

a1
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The structure of the online multiscale algorithm can be described as
following
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Algorithm 1: Online multiscale change detection and calibration

1
2
3
1
5

6

Data: sequential data do, dy, - - - . d;, - - - ; test function i/; the minimum scale k;, and the
maximum scale kpax. W denotes the empty data set, W := {add the first Zk"'“*data); Let
a:= {ak'"‘", gkmintl ... ,ak"““} denotes the coefficient for each scale and each element is

an empty set; let Clnter := {[0,0]} denotes the change interval.
Result: return the calibrated data.
— okmax—Kmin
=2 s
forj=¢0+1--- do
W := W U { the latest 2k data },
m = kiin,
while m < kpax do
Len(W)
if floor ( el ) ﬂour(zm kmm) > 0 then
let so, s1, . . ., som_1 to denote the latest 2™ new data, calculate scale m coefficients for
this data set, denote as Gpey. Store auey to the m scale coefficients set,

" = a" U{anew}

detect whether ap., is an outlier in m scale coefficients set a™.
if Gpew is an outlier in the the set a, then
receive a change interval, denote as [l] 1] ml.
calibrate the changed data.
end
end

end
end
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We detected outliers based on sample mean and sample variance, which
is defined as
Outy:={a:aé¢[i—t5, 0+ t5]} (5)

where [i, 52 are sample mean and sample variance, and t is a predefined
threshold.
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We use the baseline to calibrate,
new [ 1 r]:i=d[l:r] = (n+ thx o), (6)

where 1, 0 be the mean and standard deviation of the data in the interval
[/,r], and th is the calibrated parameter.

The purpose of this calibration method is to remove the background of
the data set.
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Results for Physics Data
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1. The data is taken during the Jefferson Lab Hall A Super Big Bite
(SBS) experiments. The SBS experiments are characterized as high rate
counting experiments and employ new Gaseous Electron Multiplier
(GEM) detectors for tracking.

2. Gaseous Electron Multiplier (GEM) data is used to reconstruct the
track of particle and then to infer information about the particle’s origin
and momentum.

3. The size of data is 30006912.

4. We add sudden change and linear gradual change artificially. The goal

is to detect the change in the data set.
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Figure 1: Raw data and changed data
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Figure 2: Sudden change results : scale 10-14, threshold 10.

The multiscale representation magnifies the sudden change and shrinks the noise in
the raw data set. When we increase the scale, the results is more reliable, however,
the accuracy goes down.
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Figure 3: linear gradual change results : scale 15-19

For the linear gradual change, we got a similar results. The gradual change is been detected in a

higher level.
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Figure 4: The minimal and maximal scale we set is 10 and 20. (a) shows the
results of mix change detection results when using a piecewise constant basis

and choosing an outlier parameter t = 11 and (b) is the corresponding scale for
each change interval.
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Figure 5: (a) shows the results of sudden change detection results when using a
piecewise constant basis and choosing an outlier parameter t = 11 and (b) is
the corresponding calibrated ADC based on the detection results .
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change happens in red data interval
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Figure 6: (a) shows the results of linear change detection results when using a
piecewise constant basis and choosing an outlier parameter t = 11 and (b) is
the corresponding calibrated ADC based on the detection results .
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change happens in red data interval
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Figure 7: (a) shows the results of mix change detection results when using a
piecewise constant basis and choosing an outlier parameter t = 12 and (b) is
the corresponding calibrated ADC based on the detection results .

24 /26



uality Monitoring Vult tho n thi Results for Physics Data

@ Using multiscale basis to represent the raw data set.
change in raw data set — outlier in coefficient set

Develop an online multiscale method to monitor the data.

@ Autonomous calibrations using autonomous change detection and
baseline calibrations.

© The online multiscale method is an alternative to machine learning
and doesn't require any training.
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Thank you
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