Online triggering with deep learning
AI for particle imaging detector

Meghna Bhattacharya, Michael Kirby (Fermilab)
26th International Conference on Computing in High Energy and Nuclear Physics
May 8th, 2023, Norfolk, VA
Particle Imaging Detectors: LArTPCs

Data taking
2015-2021

Data taking starts 2023

Timeline ~ 2030

Data taking
2022-2027
The Crux of LArTPCs: Next Gen Particle Imaging Detectors

- Excellent particle imaging detector
- mm scale spatial resolution
- Light signal by PMTs

Current generation LArTPCs

Diagram showing charged particles and waveform signals:
- Sense Wires U, V, Y
- Time (Drift Direction)
- Wire (Beam Direction)

Color corresponds to deposited charge:
- Protons
- Electron shower

Fermilab
LArTPC Images:

LArTPC - a sneak peek into the world of neutrinos

showers

ν

18 cm

LArTPC - a sneak peek into the world of neutrinos

Event Reconstruction

Online/Real-time Triggering and Tagging

showers

track

track

Next Gen LArTPCs

Bigger Detectors → more neutrino interactions expected

Challenge - efficient, fast turnaround data processing to meet physics goals

1X ~ 5X ~ 500X

LAr Mass

Data rates

1X 5X ~100X

33 GB/s 45 GB/s 5 TB/s

μBooNE SBN Program DUNE

#channels
DUNE - Future Flagship Experiment @ Fermilab

● World’s largest multi kiloton LArTPC detector

● One of the major physics goals
 ○ study rare (off-beam) events at Far Detector

Expected data rate ~1.15 TB/s/ 10kT

Requirement: efficient and continuous data processing
DUNE - Future Flagship Experiment @ Fermilab

- World’s largest multi kiloton LArTPC detector
- One of the major physics goals
 - study rare (off-beam) events at Far Detector
- Requirement: efficient and continuous data processing

“For in this new era, the neutrinos bring it’s trigger, the key to everything” - Chatgpt
ML based Trigger Algorithm

- Parallel trig. algorithm: Identify ν & ν-like interactions

Shower - electron, photon, michel, delta

Track - Muons, Pions (MIP) or Protons (HIP)

Other - Low energy blips
Dataset Info:

- Simulated neutrino interactions, overlaid on top of cosmic ray data

- Goal: develop a TPC-data based ML algorithm
 - Use wire waveform information from opendata

- Training logistics -
 - Crop image around highest pixel value
 - 512 X 512 pixel maps as input
 - Samples
 - Trained on ~34,000 events
 - Validation ~ 4,000 events
 - Test sample ~ 4,000 events

MicroBooNE Public Data Sets: a Collaborative Tool for LArTPC Software Development

Giuseppe Cerati, Track 8
Semantic Segmentation Ingredients:

- Cropping around highest pixel value
- Corresponding pixel truth map

Pixel-level object recognition - Classify every pixel into pre-defined semantics (labels)
Network Architecture:

- Sparse images → < 1%
- NVIDIA - Minkowski Engine
- Training on Nvidia A100, Elastic Analysis Facility at Fermilab
- Test on CPU

Sparse approach → less matrix multiplication → better timing and memory usage → well suited for trigger algorithm
Network Architecture:

- Depth = 5 (downsample steps)
- Filters = 64
- Kernel Size = 3X3
- Cross Entropy Loss Function
- Class imbalance
 - Class wise loss weighting
- ADAM optimizer
- Learning Rate = 1e-4
- Output 512 X 512 with 3 channels per pixel encoding a probability (SoftMax classifier)
Network Prediction:

ADC Values Ground truth Predicted image

Overall accuracy of the network 85%
The performance tests were done on an Intel core i7-8750H CPU 2.2 GHz.

<table>
<thead>
<tr>
<th>Network Used</th>
<th>Memory Usage</th>
<th>Inference time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse approach</td>
<td>0.3 GB</td>
<td>~0.23 s</td>
</tr>
<tr>
<td>Dense approach</td>
<td>2 GB</td>
<td>~3 s</td>
</tr>
</tbody>
</table>
Summary:

- Promising results in terms of timing and memory usage for a trigger algorithm
- Further classification among shower
 - Target: Identify EM showers in low energy region
 - Potential for calibration purposes
 - Using Michel electrons
- Future possibility includes triggering on some of the on-beam activities
- Possibility to use ML tools on specialized hardware such as FPGA (power efficient)
TPC Based Trigger System R&D

- Excellent opportunity at MicroBooNE for R&D
- Modify the readout system at MicroBooNE to test DUNE trigger design

NU: externally triggered data stream, not sensitive to Supernova events

SN: Continuous readout, Regions of Interest (ROI) - waveform over certain threshold

Trigger Primitives:
- SN ROI Summary
 - Amplitude
 - Integral
 - Time over threshold

External Trigger
1.6 ms

NU Stream

SN Stream

ADC Counts

Time Ticks
Thank you!

This research is based upon work supported by the US Department of Energy, Office of Science, Office of High Energy Physics.

In collaboration with University of Chicago, Data Science Institute.