

The ALICE Data Quality Control

Related presentations and posters

- <u>V. Barroso & the FLP team, The new ALICE Data Acquisition system (O2/FLP) for LHC Run 3</u>
- <u>G. Eulisse, D. Rohr, The O2 software framework and GPU usage in ALICE online and offline</u> reconstruction in Run 3
- T. Mrnjavac et al., The ALICE Experiment Control System in LHC Run 3
- C. Grigoras, Calibration and Conditions Database of the ALICE experiment in Run 3
- S. Chapeland, Commissioning of the ALICE readout software for LHC Run 3
- G. Raduta et al., Bookkeeping, a new logbook system for ALICE
- G. Raduta, M. Boulais, Security Models for ALICE Online Web-Based Applications
- M. Ivanov, M. Ivanov, RootInteractive tool for multidimensional statistical analysis, machine learning and analytical model validation
- M. Storetvedt et al., The ALICE Grid Workflow for LHC Run 3
- ...and more ALICE presentations and posters

O² – the Online-Offline Computing System

O² message passing system in a nutshell

Data Quality Control evolution in ALICE

Quality Control framework

Quality Control framework

Quality Control framework

First experience – usage and performance

Statistics of the QC framework usage

(since the beginning of Run 3)

	Sync. data	Async. data	Simulation
Tasks	121	35	23
Checks	69	8	2
Object paths	17817	8263	7812
Object versions	10 millions	2 millions	2.75 millions

Collision point shift seen by ITS

Collision point shift seen by ITS

ITS2 standalone tracks - run 534125

Hit rates in Muon Trackers – discovering low-frequency noise

Performance of merging QC objects

(more benchmarks in the previous CHEP: presentation & paper)

Performance of merging QC objects

(more benchmarks in the previous CHEP: presentation & paper)

First experience – challenges and solutions

Simple message passing topology

Typical message passing topology

Jan Matejko, Battle of Grunwald

Understanding data flow

Task list below does not explain how they are interconnected:

- readout
- stfbuilder
- stfsender
- internal-dpl-clock
- readout-proxy
- internal-dpl-ccdb-backend
- Dispatcher
- qc-task-MFT-MFTReadoutTask
- mft-stf-decoder
- qc-task-MFT-MFTDigitTask
- MFT–MFTReadoutTask–proxy
- internal-dpl-injected-dummy-sink
- MFT–MFTDigitTask–proxy
- dpl-output-proxy

Understanding data flow

This graph does:

Handling bursts of traffic

Total input data throughput of incomplete MCH objects [MB/s]

(without cycle randomization applied)

Handling bursts of traffic

- Input queues are limited to one message per connection
 - Limiting queue size globally not possible in ZeroMQ
 - The high water mark option is not always respected in ZeroMQ
 - TCP buffers hold additional data anyway
- Using multiple layers of Mergers
 - Processing distributed among multiple cores
 - Increased memory usage and latency

• Parallel QC tasks publication cycles are randomly shifted in phase

Direct and indirect dependencies of AMORE

(DQM in Run 1 and 2)

Direct and indirect dependencies of Quality Control

Detector modules - contributors

Unique contributors in detector modules

Detector modules - contributions

Commits of each contributor in detector modules

Common tools – basic data inspection

Common tools – trending

Common tools – slice trending

Marcel Lesch, Berkin Ulukutlu (TPC)

Common tools – visualizing data quality

ABC detector data quality

Acceptance : Bad

→ Flag: Limited Acceptance: Missing data for sector A1

Inform ABC oncall immediately!

Calibration : Good

XYZ detector data quality

Acceptance : Good

Calibration : Good

- QC software and infrastructure successfully used throughout the commissioning and the first year of data taking
- Online & offline worlds now share the same code base and teams
- Message passing allowed to sustain the large data throughput
- Performance matches the benchmarks and sustains the heavy needs of our users
- Differences between detector team manpower and expertise are balanced out with the common framework and a set of reusable tasks

Backup slides

Common tools - trending

Collision point shift seen by ITS

Hole in the ITS acceptance

Phi Distribution of tracks with at least 3 contributors

Piotr Konopka and Barthélémy von Haller, ALICE, CERN

Ivan Ravasenga, Rik Spijkers

Hole in the ITS acceptance

Cluster Occupancy on Layer 3

Hole in the ITS acceptance

Piotr Konopka and Barthélémy von Haller, ALICE, CERN

Ivan Ravasenga, Rik Spijkers $\frac{38/31}{}$