
CHEP 2023, May 9th

A vendor-unlocked GPU reconstruction
for the ALICE Inner Tracking System
Matteo Concas, for the ALICE collaboration

mailto:matteo.concas@cern.ch

Matteo Concas, for the ALICE collaboration - CHEP 2023

ALICE reconstruction using GPU in Run 3

๏ Trigger-less acquisition: continuous readout

• The stream of data is split into O(10ms) timeframes

• Lint >10 nb-1 of PbPb data at 50kHz: 50x more than Run 2

๏ Reconstruction is two-stepped

• Synchronous phase (beam circulating): for calibration and data compression

• Asynchronous phase (no beam): full processing of data staged on a temporary buffer

๏ ALICE uses GPUs to accelerate the process[1]

• During the asynchronous reconstruction, the fraction of available GPU increases

• Use those resources efficiently by offloading ITS reconstruction there

2

[1] "The O2 software framework and GPU usage in ALICE online and offline reconstruction in Run 3"

~2 ms o
f TPC tra

cks
in PbPb @50 kH

z

https://indico.jlab.org/event/459/contributions/12432

Matteo Concas, for the ALICE collaboration - CHEP 2023

ITS reconstruction in Run 3

๏ A new upgraded Inner Tracking System

• A cylindrical silicon detector with 12.5 billion pixels and 10 m2 of sensitive area

• Provide spatial information in the form of clusters of fired pixels

๏ Continuous readout: continuous track reconstruction

• The atomic time unit is Readout Frames (ROF): ~4μs

๏ Standalone vertexing and tracking algorithm

• During the synchronous phase, 1% of primary tracks are reconstructed

• During the asynchronous phase is sensitive to secondaries and tracks lower pT

3

Timeframe
ROF 0 ROF 1 ROF ... ROF N

- clusters

- vertices 
- tracklets

- cells

- roads

- tracks

- clusters

- vertices

- tracklets

- cells

- roads

- tracks

...

- clusters

- vertices

- tracklets

- cells

- roads

- tracks

ITS tracking

Matteo Concas, for the ALICE collaboration - CHEP 2023

ITS vertexing and tracking

๏ Primary vertex seeding

• Combinatorial matching followed by linear extrapolations of tracklets

• Unsupervised clustering to find the collision point(s)

๏ Track finding and track fitting

• It uses vertex position to reduce the combinatorics in matching the hits

• Connect segments of tracks, the cells, into a tree of candidates: roads

• Kalman filter to fit tracks from candidates

๏ The algorithm is decomposable into multiple parallelisable steps

• Each ROF can be processed independently(*)

• In-frame combinatorics can be processed simultaneously

4

(*) Information from adjacent ROFs can be used to recover from information splitting

charged particle leaves hits

cell

tracklet

roads

clusters

vertex

Matteo Concas, for the ALICE collaboration - CHEP 2023

ITS tracking workflow

A parallel implementation using GPUs

๏ Yesterday: accelerate processing using parallel architectures

• Promising porting of some routines based on CUDA and OpenCL in the past

๏ Today: operate a plug-in standalone GPU tracking for ITS

• Mainstream reconstruction framework provides the interface for GPU lib loading

• Supports CUDA and HIP with a single code base

๏ Tomorrow: build a GPU reconstruction chain, including ITS

• Centrally manage GPU memory and kernel scheduling for deeper integration

• Easier to later integrate additional steps like the ITS-TPC matching

5

GPU reconstruction instance
Reco Chains

ITS reco chain

Reco chain ...

ITS CPU library

ITS CUDA library

ITS HIP library...

Available if GPU autodetection

[...]

ITSVertexer* = GPUChain.getITSTraits(GPU/CPU);

ITSTracker* = GPUChain.getITSTraits(GPU/CPU);

ITSVertexer->doVertexing(); // unique entrypoint

ITSTracker->doTracking(); // unique entrypoint

[...]

Matteo Concas, for the ALICE collaboration - CHEP 2023

Cornerstones of the GPU implementation

๏ Resource usage flexibility via configuration

• The amount of usable memory is a parameter that is passed to the algorithm

• All required chunk sizes are set as a fraction of the total available memory

๏ Multi-threaded streams process bunches of ROFs in parallel

• Each POSIX thread manages a stream, and the full tracking is independent

• I/O operations on one stream are hidden behind kernel executions

๏ Use case extensibility via a generic N-layers implementation

• TrackerGPU<NLayers> offers native support for future use cases (ITS3/ALICE3)

6

GPU DRAM memory
total

usable dedicated

chunk 1 chunk 2 chunk 3

Host registered memory

Layer 0: clusters

Layer 1: clusters

...

Layer N: clusters

...

views views views

Threads:

- I/O

- Kernels

stream
 1

stream
 3

stream
 2

Matteo Concas, for the ALICE collaboration - CHEP 2023

Cross-platform on-the-fly code generation

๏ The O2 compilation via CMake, provides

• Platform autodetection and production of corresponding target libraries

• Custom commands setting dependencies between targets

๏ HIP code is generated in place from CUDA sources

• Build source of targets parsing CUDA files and generating HIP versions

• Currently based on hipify-perl: is run on all .cu files to produce HIP

๏ Headers files are shared across both the compilations

• Negligible boilerplate (<0.1% LoCs) to cope with some architectural differences

7

// CUDA code
cudaMalloc(&A_d, Nbytes);
cudaMalloc(&C_d, Nbytes);
cudaMemcpy(A_d, A_h, Nbytes, cudaMemcpyHostToDevice);

vector_square <<<512, 256>>> (C_d, A_d, N);
cudaMemcpy(C_h, C_d, Nbytes, cudaMemcpyDeviceToHost);

// HIP code, translated
hipMalloc(&A_d, Nbytes);
hipMalloc(&C_d, Nbytes);
hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);

hipLaunchKernelGGL(vector_square, 512, 256, 0, 0, C_d, A_d, N);
hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

Matteo Concas, for the ALICE collaboration - CHEP 2023

State of the development and testing

๏ GPU implementations are more complex due to data organisation

• Naming is shared when processing steps reach the same output

๏ The vertexing is fully operative in its GPU implementation

๏ The porting of tracking is being finalised

• Road finder is under development: size and number of found roads are not static

• Track fitting had a POC, which requires an in-depth review

๏ Tested on both Nvidia and AMD cards

• First setup: workstation with AMD Ryzen™ 9 7950X CPU and Nvidia™ TITAN Xp

• Second setup: EPN node with 2x AMD EPYC™ 7452 and AMD Instinct™ MI50

8

Tracker

Tracklet Finder ✅

Trkl duplicate finder ✅

Cell finder ✅

Cell neighbour finder ✅

Road finder 🚧

Track fitting ✳

Vertexer

Tracklet Finder ✅

Tracklet Selection ✅

Vertex Fitter ✅

Clock (GHz) RAM (GB)

AMD Ryzen™ 9 7950X 4.5-5.7 128

Nvidia™ TITAN Xp 1.586 12

AMD EPYC™ 7452 2.35-3.25 512

AMD Instinct™ MI50 1.725 32

Matteo Concas, for the ALICE collaboration - CHEP 2023

Preliminary performance

๏ Total timing measured on real data

• A batch of 5 timeframes of pp collisions @500kHz

• CPU is run in single thread configuration

๏ Considerations

• The timing is promising if the primary goal is to trade GPUs for CPUs

• The most time-consuming part is the track fitting, high rewards expected

• Streaming chunks of a timeframe works successfully

• Timing decreases with memory increasing, then reaches a plateau

9

Elapsed Time [ms] AMD EPYC™ AMD Ryzen™ AMD MI50 Nvidia™ TITAN Xp

Vertexer 2913±376 1416±183 291±38 478±64

Tracker (Neigh. Finder) 550±71 287±37 211±27 779±105

Tracker Full 13756±1780 6917±893 🚧 🚧

Matteo Concas, for the ALICE collaboration - CHEP 2023

Conclusions and outlook

๏ ALICE plans to extend the coverage of GPU utilisation in the asynchronous reconstruction

• The goal is to increase the efficiency in using the resources when TPC does not have the monopoly

๏ ITS is finalising the porting of the seeding vertexer and tracking

• Road finding and track fitting, the last missing components, are under active development

• Performance in pp collisions from actual data is not final but shows some promising margin

๏ Optimisation of the algorithms is to start after the finalisation of the porting

• Tuning for GPU parameters can be performed with general-purpose tools for optimisation[1]

๏ GPU adoption in the ITS software chain can be further extended

• Signal digitisation and Clusterisation part are good candidates that are being considered

10

[1] "A parameter optimisation toolchain for Monte Carlo detector simulation"

https://indico.jlab.org/event/459/contributions/11442/

Backup

Matteo Concas, for the ALICE collaboration - CHEP 2023

Heterogeneous-Compute Interface for Portability
๏ Support GPUs from two main vendors:

• CUDA language and runtime for Nvidia

• HIP language and ROCm runtime for AMD

๏ HIP: a C++ Runtime API and Kernel language

• Portable AMD and NVIDIA applications from single source code

• It is shaped around CUDA APIs to ease translation

• CUDA libraries, like Thrust and CUB, have their HIP versions using ROCm

๏ ROCm has tools to translate CUDA to HIP automatically

• hipify-clang: based on Clang, actual code translation

• hipify-perl: script for line-by-line code conversion

๏ Strategy: maintain only the CUDA code and generate HIP

12

Matteo Concas, for the ALICE collaboration - CHEP 2023

ALICE data processing for Run 3

๏ Online reconstruction and calibration for data compression

• Synchronous: TPC full reconstruction and calibration

• Asynchronous: all compressed data are reconstructed

• Single computing framework for online-offline computing: O2

๏ Operate part of the reconstruction on GPUs is mandatory

• Minimise the cost/performance ratio for online farm

• 250x Event Processing Nodes (EPNs), 8x AMD MI50 GPUs

๏ Efficient utilisation of available computing resources is desired

• A larger fraction of GPUs available during the asynchronous phase

13

> 900 GB/s

Permanent storage

Readout nodes

> 3.5 TB/s

Detector Data links

Asynchronous processing

(during no-beam periods)

Disk buffer 120PB

Synchronous processing

(during data taking)

EP
N

 fa
rm

T0
/T

1
FL

P
AL

IC
E

Co
m

pr
es

se
d

ra
w

 d
at

a
(C

TF
)

Ra
w

 d
at

a
(T

F)
AO

Ds

~130 GB/s

