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for Machine Learning based statistical 
anomaly detection



Introduction and Outline

Triggerless data acquisition? 

● Stream all data from detector without waiting for a trigger signal
● Why? Hardware triggers may be insufficient for the selection

⇒ Perform an online analysis on all the data, selection based on high level features
⇒ Well suited for anomaly detection applications
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Introduce an example pipeline for collecting and processing triggerless data

● Local reconstruction using neural networks on FPGA and data transmission to a server memory
● Data quality monitoring (DQM) as an example of anomaly detection

○ New Physics Learning Machine (NPLM) technique to spot anomalies [1]
○ Run preprocessing and NPLM on a GPU for optimal performance



Detector: miniDT

Reduced area CMS Drift Tube (DT) muon detector

● First built for the test-beams of LEMMA project for muon collider
● Currently used as testbed for multiple applications

○ development and evaluation of new CMS phase-2 upgrade DT front end boards (OBDT ) [2] 
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Composed of 4 layers of cells (tubes) filled with Ar-CO2 gas mixture

● Electron avalanche produced by the passage of a muon
● Collected by a wire in the middle of each tube
● Uniform electric field provides constant drift velocity of the electrons

Mean-Timer algorithm allows to determine the muon passage time

● Find track parameters, slope and position��



Readout and Backend

Signals produced by the electron avalanches are amplified, shaped, and discriminated by custom ASIC chips in the 
Front-End electronics of the chambers

● Two evaluation boards Xilinx VC707/ OBDTs used to perform Time-to-Digital conversion (TDC) in FW
● Send data to a backend board, a Xilinx KCU1500, mounted on the PCIe of a server
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Inside the KCU, a reconstruction algorithm processes hits from 
miniDTs to identify the muon “stubs” based on neural networks[3] 

DMA transfers from the FPGA 
to the server memory of the 
stubs + all hits

RAM

Proc. unit



Backend: Reconstruction algorithm

Neural networks adopted in two steps

● Filtering: hits produced by noise are removed, keeping only 
the 4 left in each layer by the muon

● Disambiguation: Identify if the muon passed on the left or 
right of wire

Once the laterality of the 4 hits is given, the crossing time  t0 can 
be found using a simple analytical relation

● Use it to find position inside each cell and fit the track

Neural network were trained using QKeras and HLS code of the 
models produced using the package HLS4ML

5

Hits 
collection

Filtering

Disambiguation

t0 finder

Stub  estimation 

Input stream

Output stream: all hits + muon stubs

DMA Engine

Xilinx KCU1500

Reconstruction algorithm

From VC707/OBDT



First steps of data processing

Hits and stubs are transferred to the memory of the backend server  

● Reformatted and buffered temporarily on a ramdisk

First steps of the processing based on DataFrame-like operations 

● Standard data manipulation, e.g filter rows, aggregations and columnar operations
● Dask used as a scheduler to distribute the workload [4]
● Test a different approach? 
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⇒  GPGPU acceleration  

● Using a NVIDIA A100(40GB) GPU (thanks to NVIDIA academic hardware grant)
● Use it for pre-processing testing using CUDA-DataFrame (CuDF) and machine 

learning solutions for anomaly detection

KCU1500 RAM

NVIDIA A100

KCU1500

RAM Sender



Data preparation with cuDF

CuDF is a python/C++ GPU DataFrame library built on top of Apache Arrow memory format

● Implements many standard DataFrame operations, e.g. aggregations, filters, joins, … 
○ I/O modules for standard formats such as Arrow and Parquet

● Can be extended by writing custom kernels using Numba/CuPy/CUDA
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Data preparation for the anomaly detection application 
makes use of the following operations

● Aggregate hits in time with the muons stubs
○ Operations on individual “events”

● Filter-out hits not compatible outside the muon 
time window

● Columnar operations to manipulate hits features 
and prepare them for anomaly detection 
algorithm



NPLM in one slide
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Method follows a classical Hypothesis Testing 
based on the Likelihood Ratio
● Model fw(x) used to define set of alternatives 

p(x|Hw) to p(x|0), with w trainable parameters
● Model trained to minimize the logistic loss

⇒ Trained model approximates log-likelihood 
ratio between data and reference distributions
⇒ Can compute the test statistics t(D) 

Calibration procedure
Train model using reference-distributed data samples 
⇒  empirical distribution of the test statistics in validity 
of the reference hypothesis
⇒ follows the chi-squared distribution

Test data distribution
Train the model to obtain tobs
⇒ compute p-value using the 
chi-squared approximation
⇒ one value per each data sample!



DQM as an Anomaly Detection problem

Create a reference dataset R of data collected under nominal conditions

● Use it to perform the test statistics calibration “offline”

For every new batch of data D run the training procedure against R  and obtain a tobs

● Compute a p-value and determine if the batch contains anomalies 

Model fw(x) used is based on (gaussian) kernels 

● Implemented using the Falkon library[5][6], developed to run kernel methods  at scale
● Designed to exploit GPU acceleration and parallelization over multiple GPUs
● Found to be much faster than ANN-based approaches
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Monitoring miniDTs

Used low-level quantities for the monitoring:

● Collection of the hits’ drift times
○ 4 in total, one per layer

● Slope of the muon stub
● Other quantities could be used in principle, such as the hit 

rate, residuals of the track reconstruction etc.

Artificially injected real-life detector anomalies:

● Lowered cathodic strips voltage to  25% / 50% / 75% of the 
nominal levels
⇒ Electrical field not uniform inside the cell

● Reduced front-end threshold to   25% / 50% / 75% of the 
nominal levels
⇒ Higher noise producing more fake hits
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Results with Falkon

Falkon-based NPLM is capable of identifying the anomalies

● Using 2000 events for the reference dataset
● Probing batches of 500 events every time
● Easier job if more informative features were used

○ Test the method under challenging conditions
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Performance evaluation of Falkon for DQM 
applications is ongoing

● First tests with small batches dominated by 
Falkon overhead

● Size selected based on the cosmic muons rate
● Training time ~0.5s

Method is capable of handling millions of events 
efficiently[7]

● O(10s) vs O(10h) for neural networks



Outlook and future perspective

Example of an entire pipeline, from detector to 
anomaly detection

● System to collect and process a continuous 
stream of data

● DQM with low level features as an example 
application of NPLM

● Extend it to work with higher level quantities
○ Add more processing inside the GPU
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Current work on the hardware side

● Substituting KCU1500 with a larger VCU118
○ Larger number of links
○ Accept external clock / signals

● ROCE to transfer data from the board to a server
○ FEROCE - FrontEndROCE project 

● Based on the EMP firmware framework from CMS 
and ETH Scalable Network Stack for FPGAs [8]
○ Currently tested TCP/IP, moving to ROCEv2!
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New Physics Learning Machine with Falkon
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Each miniDT is composed of 4 layers of cells (tubes) 
arranged with ½ cell staggering to allow an 
estimation of the muon track

● 16 (42x14 mm2) cells per layer
● A total of ~70x70 cm2 active area per 

chamber
● Filled with an Ar-CO2 (85/15%) gas mixture
● Uniform electric field inside the cell 

providing a constant drift velocity

MiniDT
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Neural network reconstruction- hits collection and grouping
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Neural network reconstruction: filtering and reconstruction
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