Commissioning of the ALICE readout software for LHC Run 3

Sylvain Chapeland (CERN) for the ALICE Collaboration

26th International Conference on Computing in High Energy and Nuclear Physics, CHEP 2023

ALICE

- Upgrade highlights for LHC Run 3
 - Time Projection Chamber (TPC)
 36 GEM readout chambers, 500k channels, continuous readout
 - Inner Tracking System (ITS) CMOS chips in 7 layers, 12 Gpixels
 - Muon Forward Tracker (MFT), Fast Interaction Trigger (FIT)
 - 15 subdetectors in total
- Increased data throughput: x100 vs LHC Run 2
 - 3.5 TB/s from the detector
 - 8000 optical links
 - Streaming readout
- Demanding online processing and compression
 - O2: online offline system
 - Synchronous and Asynchronous processing

Data Acquisition and processing – online dataflow

- Readout: First Level Processors (FLP)
- Reconstruction: Event Processing Nodes (EPN)
- Data reduction in 2 steps

Data Acquisition and processing – online dataflow

Other related ALICE CHEP'23 talks (track)	
11361 - The new ALICE Data Acquisition system (O2/FLP) for LHC Run 3 (2)	
11373 - The ALICE Experiment Control System in LHC Run 3 (2)	
11385 - The ALICE Data Quality Control (2)	DAQ, Control, QC, Bookkeeping, GUI
11461 - Bookkeeping, a new logbook system for ALICE (Poster)	
11527 - Security Models for ALICE Online Web-Based Applications (5)	
12432 - The O2 software framework and GPU usage in ALICE online and of	ffline reconstruction in Run 3 (5)
11383 - A vendor-unlocked ITS GPU reconstruction in ALICE (2)	Reconstruction
11317 - Calibration and Conditions Database of the ALICE experiment in R	tun 3 (1)
11299 - EPN2EOS Data Transfer System (1)	Storage

Detector Data Links

- Mainly Versatile link / GBT
 - radiation-hard bi-directional 4.8 Gb/s optical fiber link between counting room and experiment
 - It delivers/receives : DATA, TRIGGER and SLOW CONTROL.
- Support for ALICE custom link DDL1 (used during Run 1 and Run 2)
 - 2.125 Gb/s

• ~8'000 links in total

=> need for high-density readout system !

Detector links patch panel in counting room (CR1)

Readout hardware - GBT detector

- CRU (a.k.a. LHCb PCIE40)
 - FPGA: Intel Arria10
 - Using maximum 24 GBT links bidirectional
- PCIe gen.3 x16
 - Dual DMA engine Gen3 x8
 - Typical throughput: 110 Gb/s
- Firmware allows dedicated user logic for on-board compression

Readout hardware - DDL detector

- C-RORC
 - FPGA: Xilinx VIRTEX6
 - 6 DDL links
 - PCle gen.2 x8
 - Used in ALICE Run 1 and Run 2

Readout hardware - servers

200 servers

500 readout cards (up to 3 per host)

Mainly: 2 x 10 cores CPUs Intel Xeon 4210 96GB RAM

Readout software

- Input: readout hardware
 - 2 types of PCIe boards
 - Raw data written to memory
- Output: O2 Data Distribution software (DD)
 - Organizes network transport (Infiniband) to EPN processing nodes
 - O2 message-based format, using FairMQ and shared memory inter-process transport
 - Some processing tasks may run on the FLP readout nodes (Data Processing Layer, DPL framework)

Readout software - requirements

Adapt to input diversity

- 15 subdetectors, 2 types of readout cards
- Various data formatting flavors
 - packing, FPGA compression, etc
 - 1 common data format (RawDataHeader, RDH)
- Various running modes throughput and content
 - Physics (p-p, Pb-Pb, Cosmics), Calibration, Synthetic runs (data replayed from simulation files), Debugging
- Detection and robustness against payload issues
- Adapt to output data format
 - Timeframe-based slicing
 - Shared memory
 - Messaging protocol
 - Metadata headers

- Accommodate and find compromise to handle external constraints
 - Sometime conflicting hardware and data distribution / processing needs.
- Primary goal on performance
 - within fixed resources available (CPU, memory)
- Highly flexible configuration needed
 - Possibly at the cost of increased complexity
 - 200 nodes doing different things at different times

Readout software

ALICE Readout software - CHEP'23

Readout process – internal threads and data flow

#1 – Read data

• Initialize hardware

CRU, C-RORC using common ROC (Read-Out Card) driver interface

- Allocate memory buffers
- Provide data pages to be filled by PCIe device
 - Data are transferred into memory by DMA
 - Software provides / gets pointers to empty/ready blocks

- #2 Aggregate and slice data
- Group data of different sources by time interval
 - Trigger and continuous detectors
 - Chunks of 32 LHC orbits = 1 timeframe
- Check data consistency

Raw Data Headers from the incoming payload provide trigger counters, detector status bits, structure sizes, etc

- #3 Distribute data to consumers
- Formatting into O2 messages and adding top-level headers
- Forwarding to Data Distribution software in charge of pipelining local processing and sending to EPNs
- Report performance and errors

#4 – Side options

- Special features used for commissioning:
 - on-the-fly LZ4 compression
 - recording to disk
 - online data monitoring
 - simulated data file player
 - exercising full online processing chain with realistic data

Release cycle

- Software
 - 35 releases since beginning of 2022
 - No change in baseline concepts, but many on-demand features
 - Follows FLP weekly deployments
 - Sometime on-the-spot compilation for custom testing / debugging
- Configuration
 - Automated config generation
 - From limited source variables, CSV table: hosts, hardware serials, memory size
 - GIT repository to track reference of multiple configuration flavors
 - Support tools
 - NFS based distribution of reference files
 - Consul instance for production

Memory layout

Memory layout

• Page size adjustment

Not too big (loose space when not filled), not too small (inefficient)

• Fine-grain configuration needed

Per detector, per host, per CRU... and possibly even per-link

- To adapt to individual link rates and events sizes
- Tuning requires detailed monitoring

Memory buffers monitoring

Time-based plots: host page release rate and latency, usage of each buffer.

ALICE Readout software - CHEP'23

Memory buffers monitoring

Realtime view

State of each data page is shown Low-latency / high refresh rate

Pages being processed downstream Pages being checked/formatted by readout Pages in CRU buffer waiting to be written

Video stream example

ALICE Readout software - CHEP'23

Commissioning

• Lots of work done in 2022 to get the system ready for LHC restart

Over 2000 PB have been readout in 200 days (test + physics data)

i.e. ~0.6 GB/s/FLP on a 6 months period

Commissioning

ALICE Readout software - CHEP'23

5 July 2022: ALICE first 13.6 TeV collisions of LHC Run 3

Readout and DAQ Performance

- Running routinely above the design validation criteria of 70Gb/s per FLP for testing
- Readout data flow exercised in demanding and changing conditions
 - Optimization of memory buffers (best page size depends on detector payload)
 - Little NUMA effects seen, plenty of headroom on QPI links

Readout and DAQ Performance

ALICE Readout software - CHEP'23

Physics run 527446 – duration 9h20m50s

Outlook

- Streaming readout system doing fine
 - Design margins find their use to accommodate detector evolving needs
 - Hardware does the job
 - Ongoing software developments: always more tools and features needed
 - Ease support and operations, facilitate performance optimization
- ALICE started Run 3 with success
 - Actively taking cosmics and p-p physics data
 - Exercising data flow and processing with p-p at high rates and simulated files
 - 2023 operations resumed
 - Waiting for HI collisions