# Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs

Sebastian Dittmeier (Physikalisches Institut - Heidelberg University)

on behalf of the ATLAS TDAQ collaboration CHEP 2023 May 08 – 12, 2023@ Norfolk, Virginia, USA



#### **Event Filter Tracking for ATLAS @ HL-LHC**

- Event Filter forms trigger decision after L0 accept
- Track reconstruction computationally intensive
  - Track finding biggest challenge
- Ongoing R&D on acceleration with new algorithms and GPUs or FPGAs

Table 2.4: The CPU required in HS06 × sec to reconstruct  $t\bar{t}$  MC events with  $\langle \mu \rangle = 140$  and 200 in the ITk, using full-scan and regional (5%  $\eta$ - $\phi$  coverage) track selection cuts.

| $\langle \mu \rangle$ | Tracking  | Byte Stream | Cluster | Space  | Si Track | Total |     |
|-----------------------|-----------|-------------|---------|--------|----------|-------|-----|
|                       |           | Decoding    | Finding | Points | Finding  | ITk   |     |
| 140                   | full-scan | 2.2         | 6.1     | 1.0    | 13.4     | 22.7  |     |
|                       | regional  | 0.33        | 0.90    | 0.15   | 1.11     | 2.49  |     |
| 200                   | full-scan | 3.2         | 8.1     | 1.2    | 23.2     | 35.7  |     |
|                       | regional  | 0.48        | 1.23    | 0.18   | 1.92     | 3.81  | [1] |



# Finding Track Candidates with Graph Neural Networks



- Exa.TrkX / GNN4ITK pipeline with different methods per step (computational constraints)
- More talks at CHEP on <u>Exa.TrkX</u> and developments in GNN4ITK (<u>1</u>) and (<u>2</u>)
- FPGAs can potentially, compared to CPUs / GPUs:
  - Speed up inference considerably
  - **Reduce power** consumption

# Challenge: retaining performance with smaller models due to resource constraints on the FPGA

# **Considerations for GNNs on FPGAs for EF Tracking**

Model architecture

 ↔ Translation using available tools (e.g. <u>HLS4ML</u>, <u>FINN</u>), dedicated hardware implementations

#### Hardware implementations under development



Model architecture

↔ Translation using available tools (e.g. <u>HLS4ML</u>, <u>FINN</u>),
 <u>dedicated hardware implementations</u>

VHDL implementations under development:

- Module Map for graph construction
- Walkthrough for graph segmentation

Sebastian Dittmeier - Heidelberg University

#### Hardware implementations under development

Model architecture

 ↔ Translation using available tools (e.g. <u>HLS4ML</u>, <u>FINN</u>), dedicated hardware implementations



VHDL implementations under development:

- Module Map for graph construction
- Walkthrough for graph segmentation

Resource estimate from synthesis (Stratix 10 GX versus number of graph edges

# **Considerations for GNNs on FPGAs for EF Tracking**

- Model architecture
- ↔ Translation using available tools (e.g. <u>HLS4ML</u>, <u>FINN</u>), dedicated hardware implementations
- Model optimization
- ↔ Smaller models, but also:
  Quantization + Pruning to meet resource constraints

# Model optimization studies

# **Graph construction using Metric Learning**



- Goal: Limit amount of false edges while keeping true edges
- Embed hit points into latent space using a **multi-layer perceptron (MLP)**
- Connect hits that are close to each other in latent space
- Trade-off efficiency versus purity by cut on radius



Sebastian Dittmeier - Heidelberg University

# Quantization and Pruning studies with TrackML dataset

- Simplified detector geometry, adapted from early ATLAS ITk designs
- Pile-up 200 conditions like @ HL-LHC
- The following studies make use of a small pre-processed dataset of particles with  $p_T > 1$  GeV
- <u>Repository on Github</u>: fork of Exa.TrkX pipeline



dimensions



# **Quantization Aware Training**

Using **Brevitas** (Xilinx), quantizing weights and activations to 8 bits



Hit input data using signed fixed point representation <2,10>

Model size evaluation in Bit Operations per cluster: BOPs  $\propto (1-f_p)b_a b_w$  $f_p$ : pruning fraction,  $b_a(b_w)$ : bit width of activations (weights)





Sebastian Dittmeier - Heidelberg University







#### **Further Considerations**

- Model architecture
- Model optimization
- Event / graph size

Throughput

Deployment and integration

- ↔ Translation using available tools (e.g. <u>HLS4ML</u>, <u>FINN</u>),
  dedicated hardware implementations
- ↔ Smaller models, but also:
  Quantization + Pruning to meet resource constraints
- ← Segmentation of graphs , restrict on sub-detectors, or external memory / HBM to meet memory constraints
- ↔ Online track reconstruction for the trigger
  EF system rates: 1 MHz (regional), 150 kHz (global)
- ↔ Accelerator cards and tools (Xilinx, Intel), heterogeneous software platforms (e.g. oneAPI)
   Sebastian Dittmeier - Heidelberg University



### **Conclusions and Outlook**

- Ongoing studies to implement GNNs on FPGAs for the ATLAS Event Filter @ HL-LHC
- Graph construction methods under investigation
  - Metric learning MLP quantization and pruning studies look promising
  - Pending next steps:
    - Translation for FPGA and complete algorithmic implementation
    - Application to ATLAS ITk simulation
  - Planned comparison with VHDL Module Map implementation
- More ongoing studies:
  - Performance of smaller interaction networks for ATLAS ITk
  - Graph segmentation into detector regions
  - MLP and Interaction Network to FPGA translation



### **Conclusions and Outlook**

- Ongoing studies to implement GNNs on FPGAs for the ATLAS Event Filter @ HL-LHC
- Graph construction methods under investigation
  - Metric learning MLP quantization and pruning studies look promising Ο
  - Pending next steps: Ο
    - Translation for FPGA and complete algorithmic implementation
    - Application to ATLAS ITk simulation
  - Planned comparison with VHDL Module Map implementation Ο
- More ongoing studies:
- Thank you for your attention! Performance of smaller interaction networks for ATLAS ITk Ο
  - Graph segmentation into detector regions Ο
  - MLP and Interaction Network to FPGA translation Ο



Sebastian Dittmeier - Heidelberg University

# **ATLAS upgrade for the High-Luminosity LHC**

- Peak instantaneous luminosity of 7.5 ×  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup> leads to average pile-up  $\langle \mu \rangle \approx 200$
- Upgrades include:
  - New all-silicon tracking detector: Inner Tracker (ITk)
  - Upgrade of Trigger and Data
    Acquisition System (TDAQ) <sup>[3]</sup>
  - And more (HGTD, muon system, calorimeter)



# The approach: Graph Neural Networks on FPGAs

- Finding track candidates with **Graph Neural Networks**
- **Demonstrated good performance** with ATLAS ITk simulation <sup>[5]</sup>(GNN4ITK)
- Reference to GNN4ITK talks
- FPGAs can potentially, compared to CPUs / GPUs:
  - Speed up inference considerably
  - **Reduce power** consumption



# **Collision events as graphs**

- Graphs consist of a set of nodes and edges
- Take an event in a detector:
  - Represent each **hit** as a **node**
  - Connect nodes by edges
  - Edges suggest two hits belong to the same track
- 3 levels of information:
  - Node-level (position, energy deposited, etc.)
  - Edge-level (belongs to track or not, geometric info, etc.)
  - Graph-level (event, detector region, etc.)
- Similarly, predictions can be made with a GNN on node-level, edge level, and graph-level
  - In this case, make edge-level predictions to construct tracks (i.e. are edges true or false?)



# **Graph construction methods**

Goal: Limit amount of false edges while keeping true edges

- Metric learning
  - Embed hit points into latent space using a **multi-layer perceptron (MLP)**
  - Connect hits that are close to each other in latent space

#### • Module map

- For each module pair, find max and min of geometric values
- Apply geometric cuts for each pair, and construct map of possible connections/edges
- Store in permutation invariant matrix



# Edge classification (GNN)

Goal: classify edges as "True" or "False" - could they belong to a track?

#### GNNs rely on **Message Passing**:

- Node vectors (properties of node) are updated through an update function (MLP)
- 2. Information is passed along edges to neighbouring nodes
- 3. All messages are aggregated (summed) at each node
- 4. After one or more message passing steps, use classifier to make edge-level predictions



# Edge classification (GNN)

Use type of GNN called "Interaction Network"

- Interaction Network adds an extra step to the message passing algorithm
- "Edge network" updates edge features, allowing two nodes to form unique relationships
- Improves quality of edge-level predictions

Finally, edge scores are assigned to all edges in an event

Use threshold value (e.g. ~0.5) to discard false edges



### **Track reconstruction methods**

#### Method 1: Walkthrough

- Identify starting node
- Traverse edges with high scores
- Longest path found  $\rightarrow$  track candidate



#### Method 2: Connected components

- For edges above threshold score, identify connected paths
- Assign component index to nodes



Method 3: Connected components followed by walkthrough

# A closer look at the data set

- **TrackML** Detector Example
- Input to MLP for metric learning (graph construction)
- Pre-processed dataset of particles  $p_T > 1$  GeV
  - Input data: cluster data with 12 input features
    - cell\_count: the number of cells in the cluster
    - cell\_val: the total amount of energy deposited in the cluster



- geta, gphi: the angle of the shape vector in global coordinates
- r, phi, z:cluster coordinates
- Detector information:
  - Pixels: 50 μm × 50 μm
  - ο Short strips: 80 μm × 1200 μm
  - Long strips: 120 μm × 10800 μm
- $t \overline{t}$  production overlaid with 200 soft QCD interactions
- More details about the TrackML data set can be found here <sup>[6]</sup>



Top view

v[mm]~ch1

Described in https://arxiv.org/abs/2012.04533

D(100) µm

Side view

w[mm]

0(100)

dimensions



Sebastian Dittmeier - Heidelberg University

dimensions



 $f_p$ : pruning fraction,  $b_q(b_w)$ : bit width of activations (weights)

Sebastian Dittmeier - Heidelberg University





### **Exploration of HLS4ML**

- Translation from offline GNN tools to FPGA implementation required
- Graph construction Metric Learning MLP as test bed
  - Translation of metric learning MLP successful PyTorch → ONNX → HLS4ML
  - Comparable performance, evaluated for 10 events
  - Efficiency and purity on edge level, connecting 2 hits belonging to the same track

| Model Implementation       | Efficiency | Purity |  |
|----------------------------|------------|--------|--|
| PyTorch                    | 0.986      | 0.221  |  |
| HLS converted from PyTorch | 0.974      | 0.222  |  |

# **Exploration of tools for MLP and GNN translation**

- OpenHLS: study for metric learning MLP
  - <u>https://arxiv.org/abs/2302.06751</u>
  - <u>https://github.com/makslevental/openhls</u>
- FINN: Fast, Scalable Quantized Neural Network Inference on FPGAs
  - <u>https://github.com/Xilinx/finn</u>
- FlowGNN: A Dataflow Architecture for Universal Graph Neural Network Inference via Multi-Queue Streaming
  - <u>https://arxiv.org/abs/2204.13103</u>
  - <u>https://github.com/sharc-lab/FlowGNN</u>