
Track reconstruction for the
ATLAS Phase-II Event Filter

using GNNs on FPGAs
Sebastian Dittmeier (Physikalisches Institut - Heidelberg University)

on behalf of the ATLAS TDAQ collaboration
CHEP 2023

May 08 – 12, 2023@ Norfolk, Virginia, USA

Event Filter Tracking for ATLAS @ HL-LHC

● Event Filter forms trigger decision after L0 accept
● Track reconstruction computationally intensive

○ Track finding biggest challenge
● Ongoing R&D on acceleration with

new algorithms and GPUs or FPGAs

Sebastian Dittmeier - Heidelberg University 2

[1]

[1]

https://cds.cern.ch/record/2802799
https://cds.cern.ch/record/2802799

● Exa.TrkX / GNN4ITK pipeline with different methods per step (computational constraints)
● More talks at CHEP on Exa.TrkX and developments in GNN4ITK (1) and (2)
● FPGAs can potentially, compared to CPUs / GPUs:

○ Speed up inference considerably
○ Reduce power consumption

Finding Track Candidates with Graph Neural Networks

[2]

Sebastian Dittmeier - Heidelberg University 3

https://indico.jlab.org/event/459/contributions/11447/
https://indico.jlab.org/event/459/contributions/11414/
https://indico.jlab.org/event/459/contributions/11713/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

Challenge:
retaining performance with
smaller models due to resource
constraints on the FPGA

Sebastian Dittmeier - Heidelberg University 4

Considerations for GNNs on FPGAs for EF Tracking
Model architecture

Sebastian Dittmeier - Heidelberg University 5

↔ Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/

Hardware implementations under development
Model architecture

Sebastian Dittmeier - Heidelberg University 6

↔ Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

VHDL implementations
under development:

● Module Map for
graph construction

● Walkthrough for
graph segmentation

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/

Hardware implementations under development
Model architecture

Sebastian Dittmeier - Heidelberg University 7

↔ Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

VHDL implementations
under development:

● Module Map for
graph construction

● Walkthrough for
graph segmentation

Resource estimate from synthesis (Stratix 10 GX)
versus number of graph edges

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/

Considerations for GNNs on FPGAs for EF Tracking
Model architecture

Model optimization

Sebastian Dittmeier - Heidelberg University 8

↔ Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

↔ Smaller models, but also:
Quantization + Pruning to meet resource constraints

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/

Model optimization studies

Sebastian Dittmeier - Heidelberg University 9

● Goal: Limit amount of false edges while keeping true edges
● Embed hit points into latent space using a multi-layer perceptron (MLP)
● Connect hits that are close to each other in latent space
● Trade-off efficiency versus purity by cut on radius

Graph construction using Metric Learning

Sebastian Dittmeier - Heidelberg University 10

effi
ci

en
cy

pu
ri

ty

radius radius

example graphs
TrackML barrel

Quantization and Pruning studies with TrackML dataset
● Simplified detector geometry, adapted

from early ATLAS ITk designs
● Pile-up 200 conditions like @ HL-LHC
● The following studies make use of

a small pre-processed dataset
of particles with pT > 1 GeV

● Repository on Github:
fork of Exa.TrkX pipeline

Sebastian Dittmeier - Heidelberg University 11

https://github.com/sdittmeier/Tracking-ML-Exa.TrkX/tree/brevitas_seb

PyTorch Reference MLP

Sebastian Dittmeier - Heidelberg University 12

Linear
BatchNorm

ReLU

Linear

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

hit data

embedded hits

Architecture adapted for FPGA target:
BatchNorm instead of LayerNorm, no output normalization

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

Evaluation using purity at fixed efficiency

Quantization Aware Training

Sebastian Dittmeier - Heidelberg University 13

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Using Brevitas (Xilinx), quantizing weights and activations to 8 bits

8 b

8 b

8 b

8 b

8 b

8 b

8 b

8 b

8 b

13 b

16 b

bit widths

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

Hit input data using signed fixed point representation <2,10>

https://github.com/Xilinx/brevitas

Quantization Aware Training

Sebastian Dittmeier - Heidelberg University 14

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Sweep of activation bit widths ba (2 to 8 bits)

8 b

1

8 b

2

8 b

2

8 b

3

8 b

13 b

3 + 8 b

bit widths

Fixed weights bit widths at 8 bits
3 independent activation parameters (#1, #2, #3)

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

Fixed activations bit widths at (7, 5, 6) bits,
3 independent weight parameters (#1, #2, #3)

Quantization Aware Training

Sebastian Dittmeier - Heidelberg University 15

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Scan of weight bit widths bw (2 to 8 bits)

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

1

7 b

2

5 b

2

5 b

2

 6 b

3

13 b

3 + 6 b

bit widths
12

12

512

512

512

512

dimensions

Adding iterative pruning to QAT

Sebastian Dittmeier - Heidelberg University 16

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Using L1 Loss Ltraining = Lhinge + L1 , L1 = λ∑|wi|, wi: weights in linear layers

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

5 b

 7 b

3 b

5 b

3 b

5 b

3 b

 6 b

4 b

13 b

10 b

bit widths
12

12

512

512

512

512

dimensions

Per pruning step: removal of smallest 10 % weights (L1 unstructured)
Pruning every 180 epochs or if validation loss is stable for 10 epochs

fp = 92.8 %

fp = 94.7 %

fp = 92.8 %

Comparing pruned QAT MLP vs MLP

Sebastian Dittmeier - Heidelberg University 17

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Using L1 Loss Ltraining = Lhinge + L1 , L1 = λ∑|wi|, wi: weights in linear layers

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

5 b

 7 b

3 b

5 b

3 b

5 b

3 b

 6 b

4 b

13 b

10 b

bit widths

Per pruning step: removal of smallest 10 % weights (L1 unstructured)
Pruning every 180 epochs or if validation loss is stable for 10 epochs

fp = 92.8 %

fp = 94.7 %

fp = 92.8 %

fp = 90.2 %

Further Considerations
Model architecture

Model optimization

Event / graph size

Throughput

Deployment and
integration

Sebastian Dittmeier - Heidelberg University 18

↔ Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

↔ Smaller models, but also:
Quantization + Pruning to meet resource constraints

↔ Segmentation of graphs , restrict on sub-detectors, or
external memory / HBM to meet memory constraints

↔ Online track reconstruction for the trigger
EF system rates: 1 MHz (regional), 150 kHz (global)

↔ Accelerator cards and tools (Xilinx, Intel),
heterogeneous software platforms (e.g. oneAPI)

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/

Conclusions and Outlook
● Ongoing studies to implement GNNs on FPGAs for the ATLAS Event Filter @ HL-LHC
● Graph construction methods under investigation

○ Metric learning MLP quantization and pruning studies look promising
○ Pending next steps:

■ Translation for FPGA and complete algorithmic implementation
■ Application to ATLAS ITk simulation

○ Planned comparison with VHDL Module Map implementation
● More ongoing studies:

○ Performance of smaller interaction networks for ATLAS ITk
○ Graph segmentation into detector regions
○ MLP and Interaction Network to FPGA translation

Sebastian Dittmeier - Heidelberg University 19

Conclusions and Outlook
● Ongoing studies to implement GNNs on FPGAs for the ATLAS Event Filter @ HL-LHC
● Graph construction methods under investigation

○ Metric learning MLP quantization and pruning studies look promising
○ Pending next steps:

■ Translation for FPGA and complete algorithmic implementation
■ Application to ATLAS ITk simulation

○ Planned comparison with VHDL Module Map implementation
● More ongoing studies:

○ Performance of smaller interaction networks for ATLAS ITk
○ Graph segmentation into detector regions
○ MLP and Interaction Network to FPGA translation

Sebastian Dittmeier - Heidelberg University 20

Thank yo
u for

 you
r atten

tion
!

Sebastian Dittmeier - Heidelberg University 21

Backup

[4]

ATLAS upgrade for the High-Luminosity LHC
● Peak instantaneous luminosity

of 𝟕.𝟓 × 𝟏𝟎𝟑𝟒𝐜𝐦−𝟐𝐬−𝟏 leads
to average pile-up 〈μ〉 ≈ 200

● Upgrades include:
○ New all-silicon tracking

detector: Inner Tracker (ITk)
○ Upgrade of Trigger and Data

Acquisition System (TDAQ) [3]

○ And more (HGTD, muon
system, calorimeter)

Sebastian Dittmeier - Heidelberg University 22

[4]

https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://cds.cern.ch/record/2285584
http://cdsweb.cern.ch/record/2285585

● Finding track candidates with
Graph Neural Networks

● Demonstrated good performance
with ATLAS ITk simulation [5] (GNN4ITK)

● Reference to GNN4ITK talks
● FPGAs can potentially,

compared to CPUs / GPUs:
○ Speed up inference considerably
○ Reduce power consumption

The approach: Graph Neural Networks on FPGAs

Sebastian Dittmeier - Heidelberg University 23

[2]

[2]

https://cds.cern.ch/record/2815578/files/ATL-ITK-PROC-2022-006.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

Collision events as graphs
● Graphs consist of a set of nodes and edges
● Take an event in a detector:

○ Represent each hit as a node
○ Connect nodes by edges
○ Edges suggest two hits belong to the same track

● 3 levels of information:
○ Node-level (position, energy deposited, etc.)
○ Edge-level (belongs to track or not, geometric info, etc.)
○ Graph-level (event, detector region, etc.)

● Similarly, predictions can be made with a GNN on
node-level, edge level, and graph-level

○ In this case, make edge-level predictions to construct tracks
(i.e. are edges true or false?)

Sebastian Dittmeier - Heidelberg University 24

Node

Edge

Goal: Limit amount of false edges while keeping true edges

● Metric learning
○ Embed hit points into latent space using a multi-layer perceptron (MLP)
○ Connect hits that are close to each other in latent space

● Module map
○ For each module pair, find max and min of geometric values
○ Apply geometric cuts for each pair, and construct map of possible connections/edges
○ Store in permutation invariant matrix

Graph construction methods

Sebastian Dittmeier - Heidelberg University 25

Edge classification (GNN)

Sebastian Dittmeier - Heidelberg University 26

Goal: classify edges as “True” or “False”
- could they belong to a track?

GNNs rely on Message Passing:
1. Node vectors (properties of node) are updated

through an update function (MLP)
2. Information is passed along edges to neighbouring

nodes
3. All messages are aggregated (summed) at each node
4. After one or more message passing steps, use

classifier to make edge-level predictions

1. Update nodes 2. Message passing

4. Classification3. Aggregation

Edge classification (GNN)
Use type of GNN called “Interaction Network”

● Interaction Network adds an extra step to the
message passing algorithm

● “Edge network” updates edge features, allowing
two nodes to form unique relationships

● Improves quality of edge-level predictions

Sebastian Dittmeier - Heidelberg University 27

Finally, edge scores are assigned to all edges in an event

Use threshold value (e.g. ~0.5) to discard false edges

Track reconstruction methods
Method 1: Walkthrough

● Identify starting node
● Traverse edges with high scores
● Longest path found

→ track candidate

Sebastian Dittmeier - Heidelberg University 28

Method 2: Connected components

● For edges above threshold score,
identify connected paths

● Assign component index to nodes

Method 3: Connected components
followed by walkthrough

A closer look at the data set
● TrackML Detector Example
● Input to MLP for metric learning (graph construction)
● Pre-processed dataset of particles pT > 1 GeV

○ Input data: cluster data with 12 input features
■ cell_count : the number of cells in the cluster
■ cell_val : the total amount of energy deposited in the cluster
■ leta, lphi, lx, ly, lz : the angle of the vector representing the cluster shape, in local coordinates
■ geta, gphi : the angle of the shape vector in global coordinates
■ r, phi, z : cluster coordinates

● Detector information:
○ Pixels: 50 µm × 50 µm
○ Short strips: 80 µm × 1200 µm
○ Long strips: 120 µm × 10800 µm

● t ̅t production overlaid with 200 soft QCD interactions
● More details about the TrackML data set can be found here [6]

Sebastian Dittmeier - Heidelberg University 29

Described in https://arxiv.org/abs/2012.04533

Integers or kind of quantized numbers

https://doi.org/10.1051/epjconf/201921406037
https://arxiv.org/abs/2012.04533

Input data quantization (integer)

Sebastian Dittmeier - Heidelberg University 30

Linear
BatchNorm

ReLU

Linear

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

hit data

embedded hits
Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

Input data quantization (fractional)

Sebastian Dittmeier - Heidelberg University 31

Linear
BatchNorm

ReLU

Linear

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

Linear
BatchNorm

ReLU

hit data

embedded hits
Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

Pruned QAT MLP vs MLP @ 95%

Sebastian Dittmeier - Heidelberg University 32

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Using L1 Loss Ltraining = Lhinge + L1, L1 = λ∑|wi|, wi: weights in linear layers

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

5 b

 7 b

3 b

5 b

3 b

5 b

3 b

 6 b

4 b

13 b

10 b

bit widths

Per pruning step: removal of smallest 10 % weights
Pruning every 180 epochs or if validation loss is stable for 10 epochs

Pruned QAT MLP vs MLP @ 99%

Sebastian Dittmeier - Heidelberg University 33

QuantLinear
BatchNorm
QuantReLU

QuantLinear

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

QuantLinear
BatchNorm
QuantReLU

hit data

embedded hits

Using L1 Loss Ltraining = Lhinge + L1, L1 = λ∑|wi|, wi: weights in linear layers

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw): bit width of activations (weights)

12

12

512

512

512

512

dimensions

5 b

 7 b

3 b

5 b

3 b

5 b

3 b

 6 b

4 b

13 b

10 b

bit widths

Per pruning step: removal of smallest 10 % weights
Pruning every 180 epochs or if validation loss is stable for 10 epochs

Exploration of HLS4ML
● Translation from offline GNN tools to FPGA implementation required
● Graph construction - Metric Learning MLP as test bed

○ Translation of metric learning MLP successful
PyTorch → ONNX → HLS4ML

○ Comparable performance,
evaluated for 10 events

○ Efficiency and purity on edge level,
connecting 2 hits belonging to the same track

Sebastian Dittmeier - Heidelberg University 34

Model Implementation Efficiency Purity

PyTorch 0.986 0.221

HLS converted from PyTorch 0.974 0.222

Exploration of tools for MLP and GNN translation
● OpenHLS: study for metric learning MLP

○ https://arxiv.org/abs/2302.06751
○ https://github.com/makslevental/openhls

● FINN: Fast, Scalable Quantized Neural Network Inference on FPGAs
○ https://github.com/Xilinx/finn

● FlowGNN: A Dataflow Architecture for Universal Graph Neural Network
Inference via Multi-Queue Streaming

○ https://arxiv.org/abs/2204.13103
○ https://github.com/sharc-lab/FlowGNN

Sebastian Dittmeier - Heidelberg University 35

https://arxiv.org/abs/2302.06751
https://github.com/makslevental/openhls
https://github.com/Xilinx/finn
https://arxiv.org/abs/2204.13103
https://github.com/sharc-lab/FlowGNN

