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Event Filter Tracking for ATLAS @ HL-LHC

● Event Filter forms trigger decision after L0 accept
● Track reconstruction computationally intensive

○ Track finding biggest challenge
● Ongoing R&D on acceleration with 

new algorithms and GPUs or FPGAs 
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https://cds.cern.ch/record/2802799
https://cds.cern.ch/record/2802799


● Exa.TrkX / GNN4ITK pipeline with different methods per step (computational constraints)
● More talks at CHEP on Exa.TrkX and developments in GNN4ITK (1) and (2)
● FPGAs can potentially, compared to CPUs / GPUs:

○ Speed up inference considerably
○ Reduce power consumption

Finding Track Candidates with Graph Neural Networks

[2]
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https://indico.jlab.org/event/459/contributions/11447/
https://indico.jlab.org/event/459/contributions/11414/
https://indico.jlab.org/event/459/contributions/11713/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/


Challenge: 
retaining performance with 
smaller models due to resource 
constraints on the FPGA
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Considerations for GNNs on FPGAs for EF Tracking
Model architecture
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↔  Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/


Hardware implementations under development
Model architecture
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↔  Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

VHDL implementations 
under development:

● Module Map for 
graph construction

● Walkthrough for 
graph segmentation

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/


Hardware implementations under development
Model architecture
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↔  Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

VHDL implementations 
under development:

● Module Map for 
graph construction

● Walkthrough for 
graph segmentation

Resource estimate from synthesis (Stratix 10 GX) 
versus number of graph edges

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/


Considerations for GNNs on FPGAs for EF Tracking
Model architecture

Model optimization
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↔  Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

↔  Smaller models, but also: 
Quantization + Pruning to meet resource constraints

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/


Model optimization studies

Sebastian Dittmeier - Heidelberg University 9



● Goal: Limit amount of false edges while keeping true edges
● Embed hit points into latent space using a multi-layer perceptron (MLP)
● Connect hits that are close to each other in latent space
● Trade-off efficiency versus purity by cut on radius

Graph construction using Metric Learning
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Quantization and Pruning studies with TrackML dataset
● Simplified detector geometry, adapted 

from early ATLAS ITk designs
● Pile-up 200 conditions like @ HL-LHC
● The following studies make use of 

a small pre-processed dataset 
of particles with pT > 1 GeV

● Repository on Github: 
fork of Exa.TrkX pipeline
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https://github.com/sdittmeier/Tracking-ML-Exa.TrkX/tree/brevitas_seb


PyTorch Reference MLP
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BatchNorm instead of LayerNorm, no output normalization

Model size evaluation in Bit Operations per cluster: BOPs ∝ (1-fp)babw
fp: pruning fraction, ba (bw ): bit width of activations (weights)

12

12

512

512

512

512

dimensions

Evaluation using purity at fixed efficiency



Quantization Aware Training
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Quantization Aware Training
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Fixed activations bit widths at (7, 5, 6) bits, 
3 independent weight parameters (#1, #2, #3)

Quantization Aware Training
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Adding iterative pruning to QAT
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Using L1 Loss Ltraining = Lhinge + L1 ,  L1 = λ∑|wi|,   wi: weights in linear layers
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Comparing pruned QAT MLP vs MLP
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Further Considerations 
Model architecture

Model optimization

Event / graph size

Throughput

Deployment and
integration
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↔  Translation using available tools (e.g. HLS4ML, FINN),
dedicated hardware implementations

↔  Smaller models, but also: 
Quantization + Pruning to meet resource constraints

↔ Segmentation of graphs , restrict on sub-detectors, or
external memory / HBM to meet memory constraints

↔ Online track reconstruction for the trigger
EF system rates: 1 MHz (regional), 150 kHz (global)

↔ Accelerator cards and tools (Xilinx, Intel),
heterogeneous software platforms (e.g. oneAPI)

https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/finn/


Conclusions and Outlook
● Ongoing studies to implement GNNs on FPGAs for the ATLAS Event Filter @ HL-LHC
● Graph construction methods under investigation

○ Metric learning MLP quantization and pruning studies look promising
○ Pending next steps:

■ Translation for FPGA and complete algorithmic implementation
■ Application to ATLAS ITk simulation

○ Planned comparison with VHDL Module Map implementation
● More ongoing studies: 

○ Performance of smaller interaction networks for ATLAS ITk
○ Graph segmentation into detector regions
○ MLP and Interaction Network to FPGA translation 
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[4]

ATLAS upgrade for the High-Luminosity LHC
● Peak instantaneous luminosity 

of 𝟕.𝟓 × 𝟏𝟎𝟑𝟒𝐜𝐦−𝟐𝐬−𝟏 leads 
to average pile-up 〈μ〉 ≈ 200

● Upgrades include:
○ New all-silicon tracking 

detector: Inner Tracker (ITk)
○ Upgrade of Trigger and Data 

Acquisition System (TDAQ) [3]

○ And more (HGTD, muon 
system, calorimeter)
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[4]

https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://cds.cern.ch/record/2285584
http://cdsweb.cern.ch/record/2285585


● Finding track candidates with 
Graph Neural Networks 

● Demonstrated good performance 
with ATLAS ITk simulation [5] (GNN4ITK)

● Reference to GNN4ITK talks
● FPGAs can potentially, 

compared to CPUs / GPUs:
○ Speed up inference considerably
○ Reduce power consumption

The approach: Graph Neural Networks on FPGAs
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[2]

[2]

https://cds.cern.ch/record/2815578/files/ATL-ITK-PROC-2022-006.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/


Collision events as graphs
● Graphs consist of a set of nodes and edges
● Take an event in a detector:

○ Represent each hit as a node
○ Connect nodes by edges
○ Edges suggest two hits belong to the same track

● 3 levels of information:
○ Node-level (position, energy deposited, etc.)
○ Edge-level (belongs to track or not, geometric info, etc.)
○ Graph-level (event, detector region, etc.)

● Similarly, predictions can be made with a GNN on 
node-level, edge level, and graph-level

○ In this case, make edge-level predictions to construct tracks 
(i.e. are edges true or false?)
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Goal: Limit amount of false edges while keeping true edges

● Metric learning
○ Embed hit points into latent space using a multi-layer perceptron (MLP)
○ Connect hits that are close to each other in latent space

● Module map
○ For each module pair, find max and min of geometric values
○ Apply geometric cuts for each pair, and construct map of possible connections/edges
○ Store in permutation invariant matrix

Graph construction methods
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Edge classification (GNN)
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Goal: classify edges as “True” or “False” 
- could they belong to a track?

GNNs rely on Message Passing:
1. Node vectors (properties of node) are updated 

through an update function (MLP)
2. Information is passed along edges to neighbouring 

nodes
3. All messages are aggregated (summed) at each node
4. After one or more message passing steps, use 

classifier to make edge-level predictions

1. Update nodes 2. Message passing

4. Classification3. Aggregation



Edge classification (GNN)
Use type of GNN called “Interaction Network”

● Interaction Network adds an extra step to the 
message passing algorithm

● “Edge network” updates edge features, allowing 
two nodes to form unique relationships

● Improves quality of edge-level predictions
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Finally, edge scores are assigned to all edges in an event

Use threshold value (e.g. ~0.5) to discard false edges



Track reconstruction methods
Method 1: Walkthrough

● Identify starting node
● Traverse edges with high scores
● Longest path found 

→ track candidate
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Method 2: Connected components

● For edges above threshold score, 
identify connected paths

● Assign component index to nodes

Method 3: Connected components 
followed by walkthrough



A closer look at the data set
● TrackML Detector Example
● Input to MLP for metric learning (graph construction)
● Pre-processed dataset of particles pT > 1 GeV

○ Input data: cluster data with 12 input features
■ cell_count : the number of cells in the cluster
■ cell_val : the total amount of energy deposited in the cluster
■ leta, lphi, lx, ly, lz : the angle of the vector representing the cluster shape, in local coordinates
■ geta, gphi : the angle of the shape vector in global coordinates
■ r, phi, z : cluster coordinates

● Detector information:
○ Pixels: 50 µm × 50 µm
○ Short strips: 80 µm × 1200 µm
○ Long strips: 120 µm × 10800 µm

● t ̅t  production overlaid with 200 soft QCD interactions 
● More details about the TrackML data set can be found here [6] 
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Described in https://arxiv.org/abs/2012.04533

Integers or kind of quantized numbers

https://doi.org/10.1051/epjconf/201921406037
https://arxiv.org/abs/2012.04533


Input data quantization (integer)
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Input data quantization (fractional)
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Pruned QAT MLP vs MLP @ 95%
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Pruned QAT MLP vs MLP @ 99%
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Exploration of HLS4ML
● Translation from offline GNN tools to FPGA implementation required
● Graph construction - Metric Learning MLP as test bed

○ Translation of metric learning MLP successful
PyTorch → ONNX → HLS4ML

○ Comparable performance, 
evaluated for 10 events

○ Efficiency and purity on edge level, 
connecting 2 hits belonging to the same track
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Model Implementation Efficiency Purity

PyTorch 0.986 0.221

HLS converted from PyTorch 0.974 0.222



Exploration of tools for MLP and GNN translation
● OpenHLS: study for metric learning MLP

○ https://arxiv.org/abs/2302.06751
○ https://github.com/makslevental/openhls 

● FINN: Fast, Scalable Quantized Neural Network Inference on FPGAs 
○ https://github.com/Xilinx/finn 

● FlowGNN: A Dataflow Architecture for Universal Graph Neural Network 
Inference via Multi-Queue Streaming

○ https://arxiv.org/abs/2204.13103 
○ https://github.com/sharc-lab/FlowGNN 
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